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1 Introduction

“...They can use the borrowed assets (on DeFi lending protocol Compound) to engineer

leveraged long or short positions...if an investor is bearish on the price of ETH, they can

simply deposit a stablecoin, such as DAI or USDC, as collateral and then borrow ETH

and sell it for more of the stablecoin. If the price of ETH falls, investors use some of

the DAI to purchase (cheaply) ETH to repay the debt.”1 Harvey, Ramachandran and

Santoro (2021)

Decentralized lending protocols, like Compound or Aave, have gained a lot of popu-

larity in recent years and offer several different ERC-20 assets for borrowing and lending.

All the tokens in a single market are pooled together so every lender earns the same

variable rate and every borrower pays the same variable rate. In contrast to central-

ized lending markets, variable rates are determined by demand and supply and based on

pre-defined algorithms. While traditional intermediation rely on credit ratings to infer

borrower quality, DeFi protocols require borrowers to post excess collateral as insurance

against default. In this paper, we study equilibrium pricing of interest rates, and pin

down the fundamental sources determining interest rates in DeFi protocols.

Given that interest rates in DeFi are determined algorithmically, the key to under-

standing the determinants of interest changes are the factors driving lending/borrowing

decisions by market participants. One of the main functions of DeFi lending protocols is

to enable users to take long or short leveraged positions in a cryptocurrency. We define a

long leveraged position when an investor deposits the risky asset, for example ETH, and

borrows a stablecoin to invest in ETH in the secondary market. Short leveraged positions,

in turn, are when investors deposit a stablecoin and borrow the risky asset, which they

can then sell to the secondary market. Hence the net demand for borrowing currencies

by these investors determines interest rates in the lending protocol. Expectations about

future price of the risky asset by speculators are the key drivers of the net demand. These

expectations can be manifested in different forms, for example via speculative positions

in futures market. The main question of this paper is to what extent these speculative

beliefs determine interest rates in the DeFi protocol and what is the degree of market

integration between the markets which are theoretically linked.

We start by building a simple equilibrium model of speculative trading that features a

stable and unstable asset, and two investor types: mean-variance investors with optimistic

and pessimistic beliefs on the unstable asset (e.g., ETH). They determine the spot price

on ETH, and lending and borrowing rates in the protocol. Each investor can either

borrow the unstable or stable asset depending on their speculative beliefs. Optimistic

investors borrow the stable asset to take long leveraged positions in the underlying asset.

1. Excerpt taken from Harvey, Ramachandran, and Santoro (2021)
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Conversely, pessimistic investors borrow in the unstable asset to take short leveraged

positions. Interest rates on borrowing and lending are determined through utilization,

which is a measure of the net demand for the asset. In equilibrium, interest rates on the

protocol are determined through the net demand for long or short leveraged positions by

investors. We connect interest rates to the futures market by deriving pricing conditions

assuming the bullish and bearish investor can use long and short futures positions as an

alternative to the lending protocol.

The model features the following testable implications. First, interest rate differences

reflect the relative bearish and bullish beliefs of investors. The equilibrium interest rate

differential is positively correlated to average expected return by two types of traders and

negatively correlated to the risk premium associated with the volatility of the unstable

asset. If long positions dominate short positions, we show that the net demand for bor-

rowing in stablecoins is higher, which predicts higher interest rates. Second, we show that

if the DeFi lending and futures markets are integrated in the sense of speculators holding

the same beliefs about the future value of the risky asset, then interest rate differences

between stablecoins and risky cryptocurrencies reflect futures premia. A positive funding

rate is consistent with bullish investor beliefs and investors taking a long futures position.

When futures trade at a premium due to long positions dominating short positions, we

find this is consistent with utilization and interest rates that are higher for the stable

asset.

We take these predictions to the data. First, we test whether trading in DeFi lending

protocols are integrated with futures markets using a rich dataset of wallet-level transac-

tions. This blockchain-based data records how individual users use the lending protocol

to track their deposits and borrowings of different currencies. Using this data, we classify

wallets based on whether they take long or short positions on ETH respectively. A long

trader is classified as a user that deposits ETH and borrows USDT to take a leveraged

position on ETH, and a short trader is a wallet that deposits USDT and borrows ETH

to short sell ETH. Our algorithm allows us to construct a measure of aggregate net long

positions. Empirically, we observe an increase in futures premia is a robust predictor

of an increase in long positions and a decline in short positions in the lending protocol.

Therefore we show using granular data that lending protocols are being used for leveraged

trading.

Second, we investigate the fundamental determinants of interest rates. Through the

lens of the model, an increase in futures premia is indicative of net bullish beliefs on the

risky cryptoasset. All else equal, net bullish beliefs correspond to optimists taking lever-

aged positions by depositing the unstable asset and borrowing the stable asset. Higher

borrowing of the stable asset increases utilization and causes stable asset interest rates

to increase. We find further support through the funding rate, where a positive rate
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indicates excess long futures positions corresponds to an increase in stablecoin interest

rates relative to ETH. Other sources of interest-rate differences include measures of risk

premia, such as the volatility of ETH, and the relative wealth of optimists in the protocol.

Third, while we document evidence of integration between the lending protocol and

futures markets, we show that the link between the two markets are weak. The sensitivity

of the interest rate differential to changes in futures premium is significantly smaller than

under the benchmark case of perfect market integration. The coefficient on the futures

premium is typically in the range of 0.002 to 0.01, which implies that a 1 per cent

change in the futures premium leads to a 0.2 to 1 basis point change in the interest

rate differential. We further explore factors that may break the link between interest

rates and futures premia. A key measure of integration between these two markets is to

construct Covered interest rate parity (CIP) deviations. CIP is a standard no-arbitrage

conditions in currency markets, and allows us to investigate efficiency of the futures and

DeFi Lending protocol markets jointly. We provide lower and upper bounds for CIP

deviations based on arbitrage strategies that can be employed using both a DeFi lending

protocol and futures markets. After accounting transaction costs, such as gas fees to

authenticate transactions on the blockchain, we find CIP deviations are typically within

the arbitrage bounds. In addition to gas fees, an increase in the volatility of ETH/USDT,

and periods of extreme returns in ETH lead to larger CIP deviations. Hence, both weakly

correlated expectations of speculators and limits to arbitrage lead to only a weak market

integration.

Fourth, we test if speculators in both DeFi and futures markets have unbiased expec-

tations about future price of the risky asset. To do so, we estimate a regression of future

ETH returns on the interest rate differential. If aggregate beliefs of bullish and bearish

investors are unbiased, we expect that the rate of appreciation of the unstable asset equals

to interest rate differential. Our results indicate, however, that interest rate differential

are not statistically significant. We find similar result if we use futures premium as a mea-

sure of expectations in the futures market. This speaks in favor of hypotheses that the

speculators in both markets trade based on information unrelated to future price changes.

On the other have, we find that the funding rate of perpetual futures, wealth ratio and

ETH volatility can forecast future ETH returns. This may suggest that investors tend to

trade based on some stale historical information, react to past price changes and changes

in risk premium.

The remainder of the paper is structured as follows. In section 2 we summarize the

contributions of our paper to related literature. In section 3 we summarize the properties

of the DeFi lending protocol Compound and describe the data sources for our empirical

work. In section 4 we introduce the model of equilibrium interest rates. We produce

testable implications on the determinants of interest rates, and the link between interest
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rates on the DeFi lending protocol and derivative markets. In section 5 we conduct our

empirical analysis. Section 6 concludes.

2 Related literature

Our paper contributes to an emerging literature on decentralized finance (DeFi) (Harvey,

Ramachandran, and Santoro 2021; Schär 2021). The defining feature of DeFi is that it

uses programmability, in the form of smart contracts, as an alternative to centralized

intermediaries. While the focus of this paper is on decentralized lending protocols, other

applications include the pegging dynamics and feedback with collateral of stablecoins and

the role of stablecoins in taking leveraged positions (Kozhan and Viswanath-Natraj 2021;

Perez et al. 2020; Gorton et al. 2022), and decentralized exchanges, such as automated

market makers which rely on algorithms and do not require a limit order book to execute

trades (Angeris and Chitra 2020; Capponi and Jia 2021; Capponi, Jia, and Wang 2022;

Aoyagi and Ito 2021; Hasbrouck, Rivera, and Saleh 2022; Lehar and Parlour 2021; Barbon

and Ranaldo 2021; Park 2022; Lehar, Parlour, and Zoican 2022). This research focusing

on the design of AMMs, the role of arbitrage and liquidity provision with competing

platforms of DEX and centralized exchanges.

The literature on lending protocols has focused on understanding market efficiency,

such as uncovered interest rate parity, the behavior of liquidations during risk-off events

and the dynamics of the COMP governance token (Gudgeon et al. 2020; Perez et al. 2020;

Saengchote 2021; Chiu et al. 2022; Lehar and Parlour 2022; Castro-Iragorri, Ramirez, and

Velez 2021; Qin et al. 2021; Xu and Vadgama 2022; Mueller 2022; Chaudhary and Pinna

2022; Warmuz, Chaudhary, and Pinna 2022; Rivera, Saleh, and Vandeweyer 2023). One

aspect studied is systemic risk of DeFi protocols. For example, Chiu et al. (2022) focus on

the adverse selection channel of DeFi lending and how it can create feedback loops between

the risky collateral price and lending in the protocol, and Lehar and Parlour (2022)

study systemic risk due to liquidations and how it generates feedback to cryptoasset

prices. Rivera, Saleh, and Vandeweyer (2023) theoretically derive equilibria of lending

protocols and compare the welfare and pricing efficiency relative to traditional financial

markets which rely on off-chain information. Our contribution within this literature is

to model the fundamental sources of pricing the cross-section of interest rates of both

risky cryptocurrencies and stablecoins. Investors use the protocol to take long or short

leveraged positions. If long positions dominate, we show that investors typically deposit

the risky currency as collateral and borrow stablecoins. Higher utilization of stablecoins

in turn leads to higher interest rates. We further connect our predictions for interest rates

to futures premia, providing support for our hypothesis that DeFi lending protocols are

primarily used for leverage trading.
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A final strand of literature deals with covered interest rate parity violations, yield

farming and carry returns using the futures market (Franz and Valentin 2020; Cong, He,

and Tang 2022; Schmeling, Schrimpf, and Todorov 2022; Augustin, Chen-Zhang, and

Shin 2022; LI et al. 2023), and price discovery in crypto derivatives markets (Baur and

Dimpfl 2019; Hoang and Baur 2020; Alexander, Choi, Massie, et al. 2020) and price dis-

covery and liquidity properties in perpetual futures (Shiller 1993; De Blasis and Webb,

n.d.; Soska et al. 2021; Alexander, Choi, Park, et al. 2020; He et al. 2022). We make two

contributions to this literature. First, we derive a testable relation between the funding

rate on perpetual futures and the interest-rate differences between stablecoins and risky

cryptocurrencies on DeFi lending protocols. In particular, when futures trading at a

premium, and investor long positions dominating short positions. For example, Franz

and Valentin (2020) note significant departures from CIP based on lending rates across

exchanges, and He et al. (2022) show that perpetual futures also violate no-arbitrage con-

ditions. We construct an alternative measure of CIP deviations at an intra-day frequency

using perpetual futures contracts. Our choice of perpetual futures follows the “crypto

carry” documented in Schmeling, Schrimpf, and Todorov (2022), which finds significant

futures premia using perpetual futures. Our contribution is that in addition to crypto

carry, we account for interest rate differences across currencies. We find that CIP devia-

tions are typically within arbitrage bounds after taking into account ETH gas fees. They

are also higher during periods of extreme ETH returns and periods of high volatility.

3 Definitions and Data

3.1 Collateralized Lending

Collateralized lending markets like Compound allow users to borrow and lend in multiple

currencies by tapping into liquidity pools of multiple assets. Users supply a collateral

asset, and can borrow a fraction as tokens in another asset that is based on the collateral

factor of a given asset.

The first panel of Figure 1 illustrates the process of supplying ETH to Compound

(this gets you cETH token). Every currency supplied to the protocol is converted to a

Compound token. For example, ETH collateral is converted to cETH, WBTC collateral

is converted to cWBTC. Exchange rates between ETH and cETH can vary over time and

cETH can accrue interest (i.e. cETH appreciates over time). The user first dictates that

they want to use ETH as collateral. This returns the borrowing limits/collateral factors

the user can borrow any token depending on the borrowing limits. For example, the user

can borrow Dai and will have some remaining cETH in account in account as Compound

works on over-collateralization. The protocol is flexible in that it allows the user to invest

in multiple assets. The second panel shows an investor that borrows multiple currencies,
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such as USDC and DAI. Each market has separate interest rate curves on borrowing and

lending that is based on the relative utilization (ratio of borrowing to lending) of that

asset. The supply and borrow interest rates are compounded every block (approximately

15 seconds on Ethereum producing approximately continuous compounding).

Finally, users can supply multiple assets as collateral. In the third panel of Figure

1, the user deposits both ETH and wrapped Bitcoin (WBTC). The borrower receives

collateral factors for ETH and WBTC. The borrower can deposit multiple collateral

assets and have a consolidated borrowing limit from the Compound Comptroller that is

based on the collateral factors and health of their account.2

3.2 Governance

Governance token COMP used to vote on interest rate rules and other system parameters

(collateral and reserve factors). To create a proposal a user requires at least 100,000

COMP tokens. A user with 100 COMP can initiate a proposal but require community

to support through delegating tokens. All proposals are first discussed publicly in an

official governance forum, are written in smart contracts. Users can also be incentivized

to borrow and lend through COMP token rewards. 3

One key feature of governance is to vote on interest rate rules. Parameters like the

base-rate and slope of the interest rate model are chosen by voters as part of the gover-

nance protocol. The interest rate model for borrowing rates is given by the piece-wise

equation (1). a0 is the base rate, and is the rate corresponding to zero utilization. The

slope parameter b0 > 0 measures the sensitivity of interest rates to utilization. The uti-

lization rate u is used as an input parameter to a formula that determines the interest

rates. Interest rates are determined by the utilization percentage in the market. Utiliza-

tion is calculated as total borrow/total supply. All else equal, a positive slope parameter

implies higher utilization leads to higher interest rates. An additional feature of the in-

terest rate model is the kink, in which the slope parameter changes for utilization above

a threshold rate ū, typically 80 per cent. The kink makes interest rates more sensitive to

a higher utilization rate, b1 > b0. 4

iL =

a0 + b0u, u ≤ ū

a0 + b0ū+ b1(u− ū), u > ū

(1)

2. See section 3.3 for more details.
3. For example, the Yield farming craze in April 2020 was due to the reward of 10 million COMP.
4. This corresponds to the literature on modeling excess reserve balances with a logistic function in

Veyrune, Della Valle, and Guo (2018). The authors find that in money markets the interest rate schedule
becomes steeper when excess reserves are smaller. Excess reserves are the inverse of the utilization rate,
and is consistent with the behavior of the kink in the Compound interest rate model.
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Deposit rates iD is a function of utilization and borrowing rates. θ captures the

fraction of interest income that is in a reserve buffer managed by the interest rate protocol:

iD = uiL(1− θ) (2)

Interest spread for the protocol is a function of θ which is a reserve factor.

iL − iD = iL(1− u(1− θ)) (3)

Based on utilization 0 ≤ u ≤ 1, we have a lower and upper bound for the interest rate

spread:

θiL ≤ iL − iD ≤ iL (4)

3.3 Collateral factors and liquidations

Decentralized protocols allow individual account borrowing to be tracked in real-time

through smart contracts. In equation (5), the health of an account is measured based

on the relative borrowing in each currency and the individual supply of each collateral

type. To determine an accounts health one needs to analyze the supplied assets, collateral

factor, and borrowed assets. The collateral factor indicates the percentage you can borrow

against the collateral supplied and is a number between 1 and 0. We define Dj as the

supply of asset j, Lj is the borrowing of asset j and Γj is collateral factor (eg. 0.8 for

ETH).

Account health =

∑N
j=1 ΓjDj∑N
j=1 Lj

(5)

An account health < 1 triggers liquidation. Decentralized participants, such as Liq-

uidators, are responsible for liquidating the collateral and repaying the borrowed funds.

The incentive is to receive the collateral in another asset with a discount, typically around

5%. Liquidators can repay up to 50% of the assets borrowed, and the process will continue

until the health of individual’s account is > 1.

3.4 Data and Summary Statistics

3.4.1 Lending Protocol: Compound

Figures 2 and 3 plots the cross-section of borrowing and lending in the lending protocol.

An interesting observation is that stablecoins (USDT, USDC, DAI) typically have high

interest rates, and unstable cryptocurrencies (ETH, WBTC, ZRX) typically have low
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interest rates. However, since the bear market in 2022, we see a reversal with a relative

decline in stablecoin rates. To explain this pattern, We hypothesize that differences

between high and low interest rate currencies reflect differences in long and short positions

on the underlying risky asset. In addition, the most liquid currencies in both deposits and

the most utilized currencies are stablecoins, lead by USDC and DAI. In contrast, while

ETH is at times the most supplied currency, it is the fourth most borrowed currency.

Therefore the utilization, which is the fraction of supplied assets that are borrowed, is

much lower for risky currencies. In Figure 4, we plot the interest rate model for currencies

on the Compound platform. This plots borrowing rates as a function of the utilization

percentage in the market. Interest rate rules for more risky assets have a higher base-rate

and slope parameters.

3.4.2 Transaction-level data

We have utilized a data set, provided by cryptocurrency data firm Kaiko, that records

every transaction made on Compound. The data set includes all amounts deposited and

borrowed by each wallet, including a breakdown of currencies and the timestamp of each

transaction. For each wallet transaction, “deposit” and “withdrawal” refer to actions of

depositing and withdrawing collateral from the lending protocol. Conversely, the actions

“borrow” and “repay” are for borrowing and redeeming a currency. The sample starts on

January 1st, 2021, and ends on April 22, 2023. This data set allows us to test whether

investors are using the protocol to take leveraged positions. We can classify wallets as

taking long or short leveraged positions in the market. We illustrate our algorithm for

classifying these wallets in Section 5.1.

3.4.3 Perpetual Futures

A key feature of traditional futures contracts is the expiration date. When a contract

expires, a process known as settlement begins. Typically, traditional futures contracts

settle on a monthly or quarterly basis. At settlement, the contract price converges with

the spot price, and all open positions expire. Perpetual contracts are widely offered by

crypto-derivative exchanges, and it is designed similar to a traditional futures contract.

Unlike conventional futures, traders can hold positions without an expiry date and do

not need to keep track of various delivery months. For instance, a trader can keep a short

position to perpetuity unless she gets liquidated. To calculate the futures premium, we

use an index price calculated by Binance. 5

5. Binance uses a volume weighted average of prices at the following exchanges: uses a price Index
of major Spot Market Exchanges, such Huobi, Okex, Bittrex, HitBTC, Gate.io, Bitmax, Poloniex, FTX
and MXC. For more details on the construction of the price index see https://www.binance.com/en/s
upport/faq/price-index-547ba48141474ab3bddc5d7898f97928.
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Since perpetual futures contracts never settle, exchanges need a mechanism to ensure

that futures prices and index price converge on a regular basis. This mechanism is

also known as a funding Rate. Funding rates are periodic payments either to traders

that are long or short based on the difference between perpetual contract markets and

spot prices. Therefore, depending on open positions, traders will either pay or receive

funding. Binance Futures does this every eight hours. Funding rates are designed to

encourage traders to take positions that keep perpetual contract prices line in with spot

markets. Perpetual futures contracts have unique properties: while subject to margining

requirements like standard futures, they have a funding rate which investors of long

positions pay short positions, and are charged at regular intervals during the trading day.

Table 1 presents summary statistics, and Figure 5 plots the ETH/USDT spot and

futures price, the futures premium, funding rate and interest rate difference between

USDT and ETH. Futures premia and the funding rate are typically positive, which is

consistent with a net bullish market in ETH/USDT futures. Periods in which the funding

rate are negative correspond to a decline in the futures premium, negative ETH returns

and a compression of the interest rate spread between USDT and ETH.

As DeFi lending protocols offers the opportunity to take long and short positions on

risky cryptocurrencies, we examine if there are systematic relationships between interest

rates and futures premia measured using perpetual futures contracts.6 As illustrated in

Figure 6, we observe a positive correlation between the interest rate differential between

USDT and ETH rates and the futures premium and funding rate. This direct outcome of

speculative trading connects equilibrium interest rates to futures. Taken as a whole, our

results suggest a correlation between the interest rate differential, futures premia, and

the funding rate. We provide a model to link interest rates to futures premia in section

4 and analyze the determinants of interest rates in section 5.

4 Model

The model features two investor types, and two assets. Mean-variance investors have

bearish and bullish beliefs (we denote them by indices “P“ and “O” respectively) on the

future state of the unstable asset (we denote this asset by E). Investors can trade in the

spot market trading stable (we denote this asset by U) for unstable coin, use the lending

protocol to take long and short positions on the unstable asset, or trade in the futures

market. An investor with bullish beliefs on the unstable asset takes a long position. They

can further leverage their positions by depositing the unstable asset and borrow the stable

asset. Conversely, a bearish investor will short sell the risky asset by depositing the stable

asset as collateral and borrow the unstable asset.

6. Lending protocols have no term structure; interest rates are compounded at an intra-day frequency.
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The relative borrowing and lending determines interest rates through an algorithm

set by the governance of the protocol. The algorithm requires interest rates on borrowing

and lending to be based on utilization of the asset, which measures the fraction the asset

is borrowed on the protocol. All else equal, higher utilization implies higher rates, and

we impose a simple linear relation that is used by the DeFi lending protocol Compound.

Based on the algorithm for setting rates, we derive a relation between interest rates and

the bearish and bullish beliefs of investors regarding the future state of the unstable asset.

Finally, we connect interest rates to the futures market by deriving pricing conditions

assuming the bullish and bearish investor can use long and short futures positions as an

alternative to the lending protocol. The model generates testable implications on the

fundamental determinants of interest rates and parity conditions.

4.1 Spot market trading

There are two assets: stable asset U and unstable asset E. A stable asset U is a stablecoin

with price 1 USD (e.g. DAI, USDC). The price of the unstable asset E in the spot market

is p0 and its future price p1 is a random variable. The volatility of its returns is σ and

everybody in the market agrees on this parameter. Optimists believe that the expected

future price of the unstable asset is p1 = p+ while pessimists believe it is p1 = p− with

p+ >> p−. The corresponding exp The unstable coin is in positive supply ξ.

We denote the total initial wealth of optimists by WO and the total initial wealth of

pessimists by WP . Both wealth are in the stable coin units. Both types of investor are

mean-variance maximizers and have the same relative risk aversion coefficient γ.

In order to ensure the relevance of DeFi lending protocol, we assume that p+ is

substantially high so that optimists find it optimal to leverage their positions and p−

is low enough for pessimists to short sell the unstable coin. Let ∆O be a leveraged

fraction of optimists’ wealth. That is, they invest their entire wealth into asset E, post

it as collateral into DeFi protocol, borrow ∆OWO of U and invest this borrowed amount

further in E. Optimists’ next period wealth is

W̃O = WO

[
r + ∆O(r − 1) + iED −∆Oi

U
L

]
. (6)

Pessimists post their stable coins into the protocol, borrow ∆PW P of the unstable coin

and sell it in the spot market. Their wealth is

W̃P = WP

[
1 + ∆P (1− r) + iUD −∆P i

E
L

]
. (7)

Both types of investors maximize their corresponding mean-variance utility functions

subject to the evolution of wealth and constraints on the share of borrowing to be bounded

between 0 and ∆̄, which is defined by the maximum level of leverage an investor can take:
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U(∆j) = E
[
W̃j(∆j)

]
− 1

2
γV ar

[
W̃j(∆j)

]
, 0 ≤ ∆j ≤ ∆̄, j = O,P. (8)

4.2 DeFi lending and borrowing

Define the utilization of asset E as the ratio borrowed amount of token E to total wealth

deposited into the protocol:

uE =
∆PWP

WO

(9)

Similarly, the utilization of asset U is defined as the ratio borrowed amount of token

U to total wealth deposited into the protocol:

uU =
∆OWO

WP

. (10)

Interest rates are a function of utilization. Borrowing and lending rates on assets

E and B are iEL and iUL respectively. They are a function of utilization and the slope

parameter b set up by the governance body of DeFi lending protocol. Deposit rates on

assets E and U are iED and iUD. They are also functions of utilization and borrowing

rates, and an additional term θ which captures the fraction of interest income that is in

a reserve buffer managed by the interest rate protocol.

iEL = bEuE =
bE∆PWP

WO

, (11)

iUL = bUuU =
bU∆OWO

WP

, (12)

iED = uEi
E
L (1− θ) =

bE∆2
PW

2
P (1− θ)

W 2
O

, (13)

iUD = uU i
U
L(1− θ) =

bU∆2
OW

2
O(1− θ)

W 2
P

. (14)

4.2.1 Governance Block

The protocol requires some fraction of interest income to be kept as reserves. Reserves

can be used to meet depositor withdrawals and as a buffer. We capture the fraction

of income used as reserves through a reserve factor θ. The protocol maximizes the net

interest (NI) income in each coin allocated to the reserve buffer:

Vg = NIE +NIU , (15)
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where

NIE = −WOi
E
D +WP∆P i

E
L = WOi

E
LuEθ =

bEθ∆
2
PW

2
P

WO

, (16)

NIU = −WP i
P
D +WO∆Oi

U
L = WP i

U
LuUθ =

bUθ∆
2
OW

2
O

WP

. (17)

We can express the governance problem as maximizing net interest income. The param-

eters are the slope of the interest rate schedule bE and bU . For simplicity, we hold the

reserve factor θ fixed. The corresponding first order conditions are:

∂Vg
∂bE

=
θ∆2

PW
2
P

WO

+
2θ∆PW

2
P

WO

∂∆P

∂bE
= 0 (18)

and

∂Vg
∂bU

=
θ∆2

OW
2
O

WP

+
2θ∆OW

2
O

WP

∂∆O

∂bU
= 0, (19)

which yield

bE = − ∆P

2∂∆P

∂bE

(20)

and

bU = − ∆O

2∂∆O

∂bU

. (21)

4.3 Spot market equilibrium

Proposition 1: Optimal demands of pessimists and optimists and optimal slope coeffi-

cients setup by the governance body are as follows:

∆O =
p+/p0 − 1− γσ2WO

2γσ2WO

, (22)

∆P =
1− p−/p0

2γσ2WP

, (23)

bE =
γσ2WO

2
, (24)

bU =
γσ2WP

2
. (25)

See Appendix for proof.
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The spot market clearing condition

WO(1 + ∆O)−∆PWP = ξ (26)

implies the price for asset E:

p0 =
p̄

1 + γσ2
[
ξ − WO

2

] , (27)

where p̄ = p++p−

2
.

Given the equilibrium utilization ratios for both types of investor, the interest rates

for assets E and U are:

iEL =
1− µ−

4
=

1− p−/p0

4
, (28)

iUL =
µ+ − 1− γσ2WO

4
=
p+/p0 − 1− γσ2WO

4
. (29)

The interest rate differential between borrowing rates on assets E and U is given as

follows:

iUL − iEL =
1

2

(
p̄− p0

p0

)
− γσ2WO

4
. (30)

4.4 Futures market

We assume that in addition to the spot and DeFi lending/borrowing market there is

futures market. Investors of type O and P can take long and short positions in the

futures market (we assume that the pool of investors is different for spot and futures

market, i.e., they are segmented). In addition to optimists and pessimists, there are

arbitrageurs who monitor for arbitrage deviation (similar to covered interest parity) and

attempt to exploit them.

We model a perpetual futures contract with no expiry. Holders of the long position

have to pay the short position a funding rate δ in each period to equate long and short

positions. Let f0 denotes the current future rate of the risky asset E. We assume that

in order to trade futures one does not need to put in any collateral and the amount of

leverage and shorting in futures market is bounded by the risk aversion coefficients of the

traders. We denote the optimists’ expected value of futures contract by f+ = E0[ft] and

the pessimists’ expected value by f− = E0[ft].

Suppose that optimists decide to buy nO number of futures contracts. Their expected

utility

UO = nO

(
f+ − f0 − δ

)
− 1

2
γn2

Oσ
2. (31)
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Maximizing this utility function yields

nO =
f+ − f0 − δ

γσ2
. (32)

Expected utility of pessimists

UP = nP

(
f0 − f− + δ

)
− 1

2
γn2

Pσ
2, (33)

which implies the optimal demand

nP =
f0 − f− + δ

γσ2
. (34)

In the case of no arbitrage activity (e.g., no incentive to exploit a wedge between futures

market and the lending protocol rates), the market clearing condition in the futures

market is

nO = nP (35)

implies

f̄ = f0 + δ, (36)

where f̄ = f++f−

2
.

There are two aspects of the perpetual futures market that is relevant to the lending

protocol. First, it provides us an alternative way of measuring investors’ expectation

of the future value of the risky asset E. Secondly, it open up for arbitrage activity

between the futures market and the lending-borrowing rates, similar to the well-known

CIP arbitrage (see He et al. (2022)).

Let us denote by p̃ = p̃++p̃−

2
the average of the expected values of the risky asset

between optimists and pessimists trading in the futures market. If the two markets

(DeFi protocol and the perpetual futures) are integrated and the beliefs of the groups of

traders are identical, then p̄ = p̃. If one could measure p̃ using the data from the futures

market, the integration hypothesis could be tested empirically. In reality, p̃ and f̄ can

be different as they reflect the value of asset E at different horizons. The mechanism

that keeps those two variables aligned is the funding rate which increases as the wedge

between ft and pt increases and decrease otherwise. (see He et al. (2022)).

Assumption 1: δt = (ft − pt).
Given Assumption 1 we can rewrite expectations of the optimists and pessimists in

the futures market as

f+ = EO[ft] = EO[pt + δ] = p̃+ + δ
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and

f− = EP [ft] = EP [pt + δ] = p̃− + δ.

As a result, the average of the expectations of optimists and pessimists is equal to the

forward rate.

p̃ = f0.

Another force that can affect futures rate f0 is arbitrage activity. If the futures rate is

far away from the spot price and/or funding rates iE and iU are not appropriately aligned

with the spot and futures prices, arbitrageurs can profitably exploit this gap. Arbitrageurs

do this by adopting strategies similar to those they use to exploit the covered interest

rate parity relation in the traditional fixed-maturity futures markets. Below we describe

the arbitrage strategies and then discuss no-arbitrage bounds that prevents prices from

convergence due to price impacts and transaction costs.

While traditional arbitrage strategies assume no initial endowment by arbitrageurs,

we deviate from this assumption and consider an arbitrageur who starts with an initial

wealth in asset U . This is because when participating in the lending and borrowing

activities of the DeFi protocol, collateral is required, which is not the case in typical

margin trading in the FX market.

Strategy 1: Arbitrageur goes long one futures contract at rate f0. She covers this

position by shorting one coin of E. To execute the short position the arbitrageur puts p0

worth of coins U as collateral into the DeFi protocol and borrows 1 unit of asset E. She

then sells borrowed E coins in the spot market at price p0 and deposits p0 units of asset

U into the protocol to earn interest. At time t, she closes the futures contract at price ft

and pays funding rate δ, buys one unit of E at price pt in the spot market and closes the

borrowing transaction in the DeFi protocol. She pays interest p0i
E
L for borrowing E and

receives p0i
U
D for depositing U . The strategy is profitable if the total cash flow at time t

is positive:

ft − f0 − δ − pt + p0(1 + iUD − iEL ) = −f0 + p0(1 + iUD − iEL ) > 0.

Strategy 2: Arbitrageur goes short one futures contract at rate f0. She covers this

by buying one unit of E asset at price p0 and deposits it into the DeFi protocol. At time

t, she closes the futures contract at price ft and receives funding rate δ and sells one unit

of E at price pt in the spot market. She receives interest p0i
E
D for depositing E and pays

opportunity costs p0i
U
D for not depositing his initial capital U . The strategy is profitable

if the total cash flow at time t is positive:

−ft + f0 + δ + pt − p0(iED − 1− iUD) = f0 + p0(iED − 1− iUD) > 0.
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The following table summarizes the cash flow in period 0 and t:

time Strategy 1 Strategy 2

0 futures 0 0

spot p0 −p0

cash −p0 p0

t futures ft − f0 − δ −ft + f0 + δ

spot −pt pt

cash −p0i
E
L + p0(1 + iUD) p0i

E
D − p0(1 + iUD)

total ft − f0 − δ − pt + p0(1 + iUD − iEL ) f0 − ft + δ + pt + p0(iED − 1− iUD)

So, absence of any transaction costs, the arbitrageurs will have incentives to exploit

the deviations as long as the no-arbitrage relation

iUD − iEL ≤
f0 − p0

p0

≤ iUD − iED (37)

is violated.

However, even if the CIP relation (37) is violated, the arbitrageur faces transaction

costs in the form of gar fee (fees required to pay in the Ethereum blockchain in order to

execute lending/borrowing transaction) and price impacts in the protocol.7

In order to derive no-arbitrage bounds, let as consider a case when an arbitrageur

observes a deviation from the CIP relation with a paper profit:

pr1 = iUD − iEL −
f0 − p0

p0

> 0.

Suppose she decides to execute Strategy 1 by going long nA futures contracts and cover

them accordingly. This in turn, will change the interest rates in the protocol since the

utilization ratios will change as a result of his transaction. In particular, the new rates

that are established in the market after the impact of arbitrageur’s trade are:

ĩEL (nA) = bEũE =
bE (∆PWP + nAp0)

WO

= iEL +
bE (nAp0)

WO

> iEL , (38)

iUD(nA) = ũU ĩ
U
L(1− θ) =

bU∆2
OW

2
O(1− θ)

(WP + nAp0)2
=

iUDW
2
P

(WP + nAp0)2
< iUD. (39)

So, arbitrageur’s position would increase the interest rate deferential and widen the no-

arbitrage bound.

7. Given we focus mainly on determination of the interest rates in the DeFi platform, we ignore trading
cost as well as price impacts in the futures and spot markets assuming that they are much more liquid
relative to the DeFi protocol. Moreover, gas fees are not applicable for the futures and spot market as
they these transactions can be executed in she centralized exchanges.
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Moreover, the arbitrager will have to pay double gas fee (for borrowing E and de-

positing U). So, the profit after accounting for price impact and gas fee is

p̃r1(nA) = nA

(
ĩUD(nA)− ĩEL (nA)− f0 − p0

p0

)
− 2C. (40)

There two factors effecting the arbitrageur’s profit. First, gas fee is the fixed costs, so its

effect is substantial for strategies with small trading volume but diminishes if the volume

of the transaction becomes large. On the order hand, if the volume of the transaction

increases, it also increases the price impact. So, arbitrageur has to solve for an optimal

trading size to trade-off these two effects, i.e. solve for nA such that p̃r1 > 0.

Analogous condition for profit in Strategy 1 is

p̃r2(nA) > 0,

where

p̃r2(nA) = nA

(
f0 − p0

p0

− iUD + ĩED(nA)

)
− C, (41)

ĩED(nA) = bEũ
2
E(1− θ) =

bE (∆PWP )2 (1− θ)
(WO + nAp0)2

< iEL . (42)

4.5 Testable implications

The main question we seek to answer in this paper is what are the determinants of

the interest rates in the DeFi protocol. Our model implies that there are several forces

that can shape these interest rate: arbitrage and beliefs of speculators. If arbitrage is

unlimited (transaction costs, price impacts and no constraints on arbitrage capital), then

the CIP relation should hold irrespective of speculators’ beliefs and the relation between

the interest rate differential and the futures rate should be equal to 1. Indeed, Equations

(40) and (41) imply that

ĩUD(nA)− ĩEL (nA) =
f0 − p0

p0

+
2C

nA

, (43)

iUD − ĩED(nA) =
f0 − p0

p0

− C

nA

. (44)

So, our first testable hypothesis is:

H10: The interest rate differential in the DeFi protocol is entirely determined by the

arbitrage forces. Hence, in the regression of the futures basis on the interest rate differ-

ential, the slope coefficient in front of the futures rate is equal to 1.

If arbitrage is limited, then the interest rates are determined by actions (demand and
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supply) of the DeFi traders. If the DeFi protocol is populated by risky asset speculators

(as described in the model), then the interest rate differential is driven purely by beliefs

of the speculators p̄.

In the case of perfect market integration (the pool of investors trading in the futures

market and in the DeFi protocol are the same or, at least, their beliefs are identical),

measuring the futures rate f0 allows us to proxy unobserved expected future price of the

risky asset p̄:

p̄ = p̃ = f0.

Substituting relation (36) into the expression for interest differential gives us the first

measurable relation in equation (45):

iUL − iEL =
1

2

(
f0 − p0

p0

)
− γσ2WO

4
. (45)

In this case, the equilibrium interest rate differential is positively correlated to the

futures premium. A positive futures premium and funding rate is consistent with bullish

investor beliefs and investors taking a long futures position. In the DeFi lending protocol,

more investors take a long position in the risky asset E by posting it as collateral and

borrowing stable asset U , and there is less short selling of asset E. Therefore there

is higher utilization of borrowing asset U , and lower utilization of borrowing asset E.

Interest-rate setting on the protocol synchronize rates with utilization, leading to higher

interest rates (on average) on stable currencies. This leads to the following hypothesis:

H20: If arbitrage is limited and the beliefs of speculators in the lending protocol is

equal to the beliefs of speculators in the futures market. The interest rate differential is

related to the futures premium and the coefficient in front of the futures premium is one

half.

Alternatively, the demand and supply in the lending protocol can be driven entirely

or partially by pure noise and/or passive yield harvesting without any relation to the

expected future risky asset return. In this case, we expect p̄ to be at most non-perfectly

correlated with f0:

p̄ = p̃+ η = αf0 + η, cov[f0, η] = 0, 0 < α < 1.

In this case, the slope coefficient in front of the futures premium will decrease as α de-

creases and in the extreme scenario where α = 0, the interest rate differential is unrelated

to the futures premium. This leads to an alternative hypothesis H30:

H30: The interest rate differential is determined by pure noise and is unrelated to

the beliefs of speculators in the futures market (market segmentation). The interest rate

differential is unrelated to the futures premium and the coefficient in front of the futures
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premium is zero.

Our final hypothesis is related to ability DeFi traders to predict future returns on the

risky asset. If the interest rates are determined by the speculators expectations who hold

on average unbiased beliefs about future value of the risky asset, then the interest rate

differential should have a forecasting power for future risky return. In particular, let us

consider a return of the risky asset r over the future (0, t) interval. If the speculators

have on average unbiased expectations (E[p1] = p̄, where p1 denotes future price of the

unstable asset and the expectation is taken with respect to an objective measure (from

the point of view of a rational econometrician who could forecast the prices in an unbiased

fashion), then Equation (30) implies that

E[r] =
p̄− p0

p0

= 2(iUL − iEL ) + γσ2WO/2. (46)

Similarly, if f0 is an unbiased expectation of future price p1, then

E[r] =
f0 − p0

p0

. (47)

H40: Speculators hold on average unbiased beliefs about future returns of the risky

asset. Hence, in the regression of the future spot returns on interest rates, the slope

coefficient is equal to 2.

While we focus on the relationship between futures premium and interest rates, we

note other factors that can potentially affect the interest rate differential are: ratio of total

wealth locked in U and E assets (measures the fluctuation of the risk premium associated

with the risky asset), volatility of the interest rates (associated with the interest roll-over

risk; it is not modelled in the theory section; it can affect both arbitrageurs activity as well

as propensity to speculate by the speculators), ratio of wealth in the DeFi from passive

investors (related to the noise trading or yield harvesting), volatility of the risky asset

returns (associated with the risk premium of risky asset as well as possible liquidation

risk and margin calls; not modelled explicitly in the theory section). We will use some of

these variables as controls in our empirical specification.

5 Empirical Evidence

5.1 Integration between lending protocols and futures markets:

transaction level data

In this section we test whether trading in DeFi lending protocols are integrated with

futures markets using a rich dataset of wallet-level transactions. We classify wallets

based on whether they take long or short positions on ETH respectively. A long trader is
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classified as a user that deposits ETH and borrows USDT to take a leveraged position on

ETH, and a short trader is a wallet that deposits USDT and borrows ETH to short sell

ETH. Our algorithm allows us to construct a measure of aggregate net long positions.

Figure 7 plots the aggregate long and short positions using transaction data at the

wallet level. For most of the sample, long positions dominate short positions, suggesting

that traders are primarily using the protocol to conduct long leveraged positions. This is

generally consistent with futures typically trading at a premium during 2021. However,

starting in 2022, we observe more short positions, and this is in line with a bearish market

for ETH in the latter half of 2022. We empirically test the fundamentals of long and short

positions in the lending protocol in Equation (48):

LSt = β0 + β1ft − st + β2δt + β3σspott + ut. (48)

Here, the outcome variable is the difference between long and short positions in the

ending protocol. The explanatory variable are the futures premium ft − st, the funding

rate δt, the volatility of both USDT and ETH interest rates and volatility of the spot

exchange rate.

The results are summarized in Table 2. All explanatory variables are measured in

per cent, and the outcome variable is defined in USD Billion. Consistent with our model

prediction, the forward premium is a robust predictor of net long positions in the lend-

ing protocol. In column (3), a specification which controls for the funding rate and

ETH/USDT spot volatility, we find a 1% increase in the forward premium leads to a 2.9

USD Billion increase in net long positions in the protocol. For reference, the standard

deviation of the futures premium in our sample is approximately 10 basis points. We test

whether long and short positions react symmetrically to a change in the futures premium

in columns (4) to (9). We find that the integration between lending protocols and fu-

tures markets is asymmetric: long positions are more sensitive to futures premia. A 1%

increase in the futures premia leads to 2.8 USD billion increase in long positions, however

leads to only a decrease in 0.07 USD Billion in short positions. In addition to our analysis

of ETH-USDT long and short positions, we show that leveraged trading can be done for

other currency pairs on the lending protocol. In addition to ETH-USDT, futures markets

are integrated with ETH-USDC and ETH-DAI long and short positions on Compound.

For regression results using these pairs we refer readers to Appendix B. Empirically, we

observe an increase in futures premia is a robust predictor of an increase in long positions

and a decline in short positions in the lending protocol for these currencies as well.

21



5.1.1 Dynamic effects

One empirical concern with the long-short position results is that feedback effects from

these variables to the long-short position should be considered. We investigate dynamic

effects using a vector autoregression (VAR) framework. The autoregressive equations for

the long-short position, the funding rate, and the difference in returns between the two

assets are illustrated in equations (49), (50), and (51). We allow for feedback effects

between the three variables, with a baseline specification of L = 1 lags. 8

ft − st = α1 +
L∑

k=1

γ1,k (ft−k − st−k) +
L∑

k=1

β1,kδt−k +
L∑

k=1

θ1,kLSt + ε1,t (49)

δt = α2 +
L∑

k=1

γ2,k (ft−k − st−k) +
L∑

k=1

β2,kδt−k +
L∑

k=1

θ2,kLSt + ε2,t (50)

LSt = α3 +
L∑

k=1

γ3,k (ft−k − st−k) +
L∑

k=1

β3,kδt−k +
L∑

k=1

θ3,kLSt + ε3,t (51)

Figure 8 presents the effects of a unit shock to the forward premium, the funding

rate, and the difference in returns between the two assets. We find that a 1% shock to

the forward premium leads to a peak response of 3 USD Billion in long-short positions

in the protocol after approximately 2 days. In contrast, we find no significant effects of

the funding rate on long-short positions. Similar responses are observed for ETH-USDC

and ETH-DAI positions in Appendix B. In sum, we find robust evidence that lending

protocols and futures markets are integrated. We now quantify the extent of integration

through testing the pricing of interest rates and futures premia.

5.2 Determinants of interest rate differential

The model tests the channels through which futures premia and exchange rate risk trans-

late to differences in interest rates. Through our model’s first prediction in (45), an

increase in futures premia is indicative of net bullish beliefs on the risky cryptoasset. We

empirically test the fundamental of interest-rate differences in Equation (52):

iUSDT
L − iETH

L = β0 + β1ft − st + β2δt + β3σiETH,t + β4σiUSDT,t+

β5
WETH

WUSDT

+ β6σspott + ut. (52)

8. As the forward premia and funding rates are jointly determined, we do not impose a specific ordering
of the structural VAR. In our specification, shocks to each variable can only affect other variables with
a delay.
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Here, the outcome variable is the interest-rate difference between USDT and ETH.

The explanatory variable are the futures premium ft−st, the funding rate δt, the volatility

of both USDT and ETH interest rates and volatility of the spot exchange rate.

The results are summarized in Table 3. All explanatory variables are measured in per

cent, and the outcome variable is defined in basis points for readability of the results.

Consistent with our model prediction, the forward premium and funding rate is positively

related to the interest rate differential. In particular, positive futures premia and funding

rates are indicative of net optimistic beliefs in ETH. This results in an increase in investor

positions that borrow stablecoins to take long leveraged positions in the unstable asset,

and in turn higher interest rates on the stablecoin.

An additional implication of the model prediction in equation (45) is that the interest

rate differential has a risk premium that is based on the wealth of optimists and the

volatility of the risky asset. To capture this risk premium, we measure the wealth of

Ethereum deposited relative to the wealth of USDT on the Compound platform. The

relative wealth of optimistic speculators and spot rate volatility in turn measures a risk

premium. Both variables lower borrowing by optimists and therefore we predict a de-

cline in stablecoin interest rates. Consistent with our model, our regression results show

that the wealth ratio and spot rate volatility are negatively related to the interest rate

differential.

5.2.1 Dynamic effects

One empirical concern with the results in Table 3 is that interest rates and futures premia

are jointly determined, and we are not taking into account feedback effects from interest

rates to forward premia. In addition to the contemporaneous effects of the funding rate

and the futures premia on the interest rates, we test for dynamic effects using a vector

autoregression (VAR) framework. The autoregressive equations for the futures premium,

the funding rate and interest rate differential are illustrated in equations (53), (54) and

(55). We allow for feedback effects between the three variables. Our baseline specification

contains L = 8 lags. 9

ft − st = α1 +
L∑

k=1

γ1,k (ft−k − st−k) +
L∑

k=1

β1,kδt−k +
L∑

k=1

θ1,k

(
iUSDT
L − iETH

L

)
+ ε1,t (53)

9. As futures premia and interest rates are jointly determined, we are agnostic about the ordering of
our structural VAR. In our specification, shocks to each variable can only affect other variables with a
delay.
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δt = α2 +
L∑

k=1

γ2,k (ft−k − st−k) +
L∑

k=1

β2,kδt−k +
L∑

k=1

θ2,k

(
iUSDT
L − iETH

L

)
+ ε2,t (54)

iUSDT
L − iETH

L = α3 +
L∑

k=1

γ3,k (ft−k − st−k) +
L∑

k=1

β3,kδt−k +
L∑

k=1

θ3,k

(
iUSDT
L − iETH

L

)
+ ε3,t

(55)

We test the effects of a unit shock to the forward premium, the funding rate and the

interest rate difference between USDT and ETH in Figure 9. In line with the results

presented in Table 3, we find a 1 per cent shock to the forward premium leads to peak

response of the interest rate difference of 0.008 percentage points. A 1 per cent increase

in the funding rate leads to short-term increase in the interest rate difference by 0.01

percentage points. In contrast, a 1 percentage point shock to the interest rates lead to

a 2 per cent change in the futures premium, and a 0.5 percentage point increase in the

funding rate that is weakly significant at the 5 per cent level of significance.

5.3 Covered Interest Rate Parity Deviations

Using the nomenclature of the model, We empirically test whether CIP holds. We define

it using benchmark borrowing rates in equation (56). 10 The first component is expressed

(in logs) is the forward premium. The second term is the interest-rate difference between

USDT and ETH.

cipt =
ft − p0

p0

− (iUL − iEL ) (56)

We plot CIP deviations, including each component, in Figure 10. The average size of

absolute CIP deviations are approximately 7 basis points per funding period of 8 hours.

This translates to approximately a 76 per cent per annum measure. In addition, we show

the funding rate and futures premium correlate with each other. When futures trade at

a premium, this is consistent with net long positions in the futures market, leading long

position holders to pay the short position δ. The large CIP deviations we compute are

in line with the large futures premium calculated in the literature (Franz and Valentin

2020; Cong, He, and Tang 2022; Schmeling, Schrimpf, and Todorov 2022). For example,

Schmeling, Schrimpf, and Todorov (2022) document a futures premium that is in excess

of 60 per cent per annum.

10. If the CIP deviation is defined using deposit rates, cipt = ft−p0

p0
− (iUD − iED). Our analysis on CIP

violations are quantitatively similar when using deposit rates to construct the CIP deviation.
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5.3.1 Determinants of CIP deviations

As a starting point in understanding limits to arbitrage, we can construct arbitrage

bounds based on strategies outlined in section 4. These strategies capture bounds on the

forward premium: if the futures and funding rate are too high, it is profitable to borrow

stablecoins in the protocol, buying ETH in the spot market and entering a short futures

position to make a profit. Conversely, if the futures and funding rate are too low, it is

profitable to deposit a stablecoin on the lending protocol, borrow ETH and enter a long

futures position to make a profit. From equation (37), we can establish the following

bounds for the sum of the forward premium and the funding rate.

iUD − iEL ≤
ft − p0

p0

≤ iUD − iED (57)

The lower and upper bounds for the CIP deviation expressed using borrowing rates

are then given by:

iUD − iUL < cipt < iUD − iED (58)

Table 4 reports summary statistics of the CIP lower and upper bound, and percentage

of violations of the arbitrage bounds. Over the sample, we find a total of 97 per cent

violations of the arbitrage bound when we neglect transaction costs and other limits

to arbitrage. In practice, we can control for transaction costs such as gas fees on the

Ethereum blockchain. Gas is a measure of the amount of ether (ETH) a user pays

to perform a given activity, or batch of activities, on the Ethereum network. These

transaction costs are analogous to commissions on exchanges, however these costs are paid

to the miners who authenticate the transactions on the Ethereum blockchain. Therefore

arbitrageurs that deposit or borrow stablecoins and ETH on the protocol are required

to pay these gas fees. 11 We can express the CIP bounds with transaction costs as

cipLB − gasfee < cipt < cipUB + gasfee, where cipLB = iUD − iUL , and cipUB = iUD − iED.

Figure 11 plots CIP deviations and the lower and upper bounds (inclusive of ETH gas

fees). Visually, the majority of CIP deviations lie within the arbitrage bounds with gas

fees. The lower panel of Table 4 reports summary statistics of CIP arbitrage bound

violations in excess of transaction costs. We now find only 5.7 per cent of violations are

outside the bounds after taking into account gas fees. These exploitable opportunities

are asymmetric, with 4.8 per cent of violations of the lower bound, and 1.0 per cent of

violations of the upper bound.

11. As we do not have transaction level gas fees, we use a daily index of ETH gas prices from coinmetrics
network statistics as a proxy.
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Therefore gas fees are a key factor to explain persistent deviations of CIP in the

data. We note additional factors that can limit arbitrage capital. There is no term

structure in DeFi lending, so investors have to conduct an arbitrage trade based on

expectations of interest rate movements. Futures premia and funding rates determined

on the futures exchange have a high degree of leverage, leading to increased risk of

liquidations. Governance risk of DeFi protocols and counterparty risk on a centralized

exchange can also lead to unexploited arbitrage opportunities. We empirically test the

fundamental of CIP deviations in Equation (59):

|cipt| = β0 + β1gasfeet + β21.[RETH/USDT > 2std]+

β31.[RETH/USDT < 2std] + β4σETH/USDT + ut. (59)

The outcome variable is the absolute CIP violation. The gas fee is the median

transaction fee paid to miners on Ethereum blockchain and calculated by coinmetrics.

1.[RETH/USDT > 2std] and 1.[RETH/USDT < 2std] are indicator variables for ETH/USDT

returns that are greater or less than 2 standard deviations. By capturing periods of

extreme returns, we indirectly control for periods of liquidations and when positions be-

come over-leveraged and less investors can participate in arbitrage trades. σETH/USDT is

a rolling standard deviation of ETH/USDT. Periods of high volatility, all else equal, act

as a limit to arbitrage. Finally, we control for interest rate volatility of USDT and ETH.

As there is no term structure, expectations about future interest rates matter for the

profitability of arbitrage trades. All variables are measured in per cent. The results are

summarized in Table 5. In line with our results, gas fees are correlated positively with

the magnitude of CIP deviations, and deviations are higher in both periods of extreme

positive and negative returns. Turning to measures of volatility, we find an increase in

the volatility of ETH/USDT increases deviations from parity, suggesting risky collateral

is a limit to arbitrage.

5.4 Return predictability

In accordance with the testable implication of our model in equation (46), we can empir-

ically test return predictability through the following two specifications in Equation (60)

and (61):

rt+h = β0 + β1ft − st + ut. (60)
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rt+h = β0 + β1i
USDT
L − iETH

L + β2σspot,t + β3
WETH

WUSDT

+ ut. (61)

The outcome variable rt+h is the change in the future spot rate using hourly data,

where we use a horizon of 8 hours corresponding to the interval over which funding rates

are calculated. The results are summarized in Table 6. In accordance with model hypoth-

esis H40, coefficient β1 should approximate 1 and corresponds to the case when futures

premia are a significant predictor of future spot rates. The funding rate is significant in

predicting future spot rate changes, however with a coefficient less than 1 it suggests that

the investor beliefs are not fully rational. This supports the failure of market efficiency

in line with results in Gudgeon et al. (2020). We find the interest rate differential is

statistically insignificant in column (2). In a specification in column (4) that includes

controls for the other factors that affect risk premia such as the relative wealth of opti-

mists and spot rate volatility, we find interest rates and futures premia have no significant

correlation with future returns. In summary, our results show that futures markets and

DeFi lending protocols do not have unbiased beliefs regarding the future spot rate, and

these markets are segmented as investors typically have different beliefs.

6 Conclusion

In this paper, we examine the fundamental determinants of interest rates on DeFi pro-

tocols. Through a model framework and empirical evidence, we show that interest rates

reflect investor beliefs on speculative assets. Our novel contribution is connecting interest

rate determination to the futures market.

The model features a stable and unstable asset. Lending protocols allow investors to

take long and short positions on the unstable asset. Long positions are by depositing

the unstable asset and borrowing a fraction as stable assets. Short positions are the

reverse: investors deposit stable collateral and borrow the unstable asset. Investors can

alternatively take long and short futures positions: this leads to a link between futures

premia and relative interest rates across currencies.

The model features three testable implications. First, interest rate differences reflect

the relative bearish and bullish beliefs of investors. If long positions dominate short

positions, utilization of the stable asset (measured as the fraction of stable asset that is

borrowed) is higher than utilization of the unstable asset. Algorithmically, this results

in a higher interest rate on the stable asset. Second, we show that interest rates reflect

futures premia. When futures trade at a premium due to long positions dominating short

positions, we find this is consistent with utilization and interest rates that are higher for

the stable asset.
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We take these predictions to the data. First, we analyze a rich dataset of wallet-level

transactions, and show that DeFi lending protocols are integrated with futures markets,

allowing for leveraged trading. Our algorithm’s ability to classify wallets as long or short

traders and construct an aggregate net long position measure has enabled us to observe

a correlation between an increase in futures premia and an increase in long positions and

a decline in short positions in the lending protocol.

Second, we investigate the fundamental determinants of interest rates. Through the

lens of the model, an increase in futures premia is indicative of net bullish beliefs on the

risky cryptoasset. Third, we conduct market efficiency tests of uncovered interest rate

parity. Our results indicate that futures premia and the funding rate on perpetual futures

contracts are significant in predicting future spot rate changes.

Third, we construct lower and upper bounds for CIP deviations based on arbitrage

strategies that can be employed using both a DeFi lending protocol and futures markets.

After accounting for transaction costs, such as gas fees to authenticate transactions on

the blockchain, we find CIP deviations are typically within the arbitrage bounds. In

addition to gas fees, an increase in the volatility of ETH/USDT, and periods of extreme

returns in ETH lead to larger CIP deviations.

Fourth, we investigate the potential market segmentation between traders on futures

protocols and lending protocols by conducting market efficiency tests. The findings sug-

gest that there is indeed a difference in beliefs between these two groups of traders, which

leads to a breakdown of the link between interest rates and futures premia. Futures pre-

mia are shown to be more predictive of spot returns than interest rates, indicating that

traders on futures protocols have different beliefs about the future spot rate compared to

traders on lending protocols.

Taken together, our findings suggest that there is a significant level of market ineffi-

ciency between DeFi protocols and perpetual futures, which could lead to misallocation of

capital. If the interest rates offered by DeFi protocols are much lower than those achiev-

able through perpetual futures, this implies that a large amount of capital is locked in the

protocol and could be utilized more efficiently. This inefficiency could be attributed to

irrational behavior among DeFi market participants, or it may be evidence of additional

benefits associated with using DeFi markets over centralized futures trading.

To address this inefficiency, DeFi protocols could be redesigned to reduce transaction

costs, and the level of segmentation could be decreased as the market matures, thereby

increasing liquidity and reducing the price impact of arbitrage trading. Exploring the

optimal design of lending protocols and their potential use in mainstream finance is an

important area for future research.
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Figures

Figure 1: Compound: Multiple Borrowing and Lending Assets

Panel A: Single Collateral and Borrowing Currency

Panel B: Multiple Collateral and Borrowing Currencies

Note: Figure Panel A illustrates the process of supplying ETH to Compound (this gets you cETH

token). Every currency supplied to the protocol is converted to a Compound token. For example, ETH

collateral is converted to cETH, WBTC collateral is converted to cWBTC. Exchange rates between ETH

and cETH can vary over time, and cETH can accrue interest. Panel B shows an investor that borrows

multiple currencies, such as USDC and DAI, and supply multiple collateral types like ETH and wrapped

Bitcoin (WBTC).
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Figure 2: Borrowing and Lending Rates
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Note: Figure presents borrowing and lending rates on multiple assets (annualized), calculated as a

historical rolling average over the last 30 days. Source: Compound API.
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Figure 3: Borrowing and Lending
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Note: Figure presents aggregate borrowing and supply (deposits) in multiple currencies, calculated as a

historical rolling average over the last 30 days. Source: Compound API.
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Figure 4: Utilization Rate and Interest Rate Rules
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Note: Figure top panel presents utilization rates (in percentage points) on multiple assets, calculated as

a historical rolling average over the last 30 days. Bottom panel plots interest rate models on multiple

assets, in which borrowing rates are determined as a function of the utilization rate, Source: Compound

API.
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Figure 5: Spot price, interest rate differential and funding rates
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Panel D: ETH/USDT futures-spot basis

Note: Figure presents time series on the ETH/USDT price (Panel A), the interest rate differential between USDT and ETH (panel B), the ETH/USDT perpetual

futures funding rate (Panel C) and the futures premium (Panel D). All variables are measured in per cent (hourly).
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Figure 6: Interest rate difference between USDT and ETH plotted against futures pre-
mium (Panel A) and funding rate (Panel B)
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Note: This figure plots a scatter plot of interest rate differences between USDT and ETH, and the futures

premium (panel A) and funding rate (panel B) on ETH-USDT perpetual futures contracts. Price data

for futures and funding rate obtained from Tardis api, and DeFi lending protocol interest rates from

Compound.
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Figure 7: Aggregate long and short positions for ETH-USDT
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Note: Figure plots the aggregate long and short positions using transaction data at the wallet level. Long

positions (measured along the positive y-axis) aggregate USDT borrowed by investors that deposit ETH

as collateral on the Compound protocol. Short positions (measured along the negative y-axis) aggregate

ETH borrowed by wallets that deposit USDT as collateral on the protocol. Sample is daily from 1st

January 2021 to 22nd April 2023.
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Figure 8: VAR impulse responses: feedback effects of forward premia, long-short positions
and the funding rate
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Note: Figure plots the impulse responses of a VAR with three variables: the forward premium, the

funding rate and the aggregate long-short positions. longshort is measured as the difference between

long (deposit ETH and borrow USDT) and short (deposit USDT and borrow ETH) position using

wallet-level data, in billions USD. The forward premium is the difference between futures and spot prices

of ETH/USDT, and funding rate is a rate paid by long position holders to the short position every 8

hours on a perpetual futures contract. 1 lag is included in the baseline specification and daily data is

used for the analysis. Dotted lines denote a standard error band equivalent for statistical significance at

the 5% level. Sample is daily from 1st January 2021 to 22nd April 2023.
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Figure 9: VAR impulse responses: feedback effects of forward premia, interest rates and
the funding rate
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Note: Figure plots the impulse responses of a VAR with three variables: the forward premium, the

funding rate and the interest rate difference. The ird measures the difference between the USDT interest

rate and ETH interest rate (annualized). The forward premium is the difference between futures and

spot prices of ETH/USDT, and funding rate is a rate paid by long position holders to the short position

every 8 hours on a perpetual futures contract. 8 lags are included in the baseline specification and

hourly data is used for the analysis. Dotted lines denote a standard error band equivalent for statistical

significance at the 5% level
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Figure 10: CIP deviations using perpetual futures
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Note: Figure decomposes CIP deviations for the ETH/USDT pair into 3 components: (i) interest rate

differential between USDT and ETH, (ii) the funding rate on perpetual futures ETH/USDT and (iii)

the futures premium on perpetual futures ETH/USDT. Calculations are based on hourly data, and all

variables are measured in per cent (hourly).
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Figure 11: CIP deviations using perpetual futures, arbitrage bounds with ETH gas fee
transaction costs included
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Note: Figure plots CIP deviations for the ETH/USDT pair calculated using perpetual futures. Transac-

tion costs are computed using ETH gas fees, and are used to construct lower and upper bounds for CIP

arbitrage. Calculations are based on hourly data, and all variables are measured in basis points (hourly).
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Tables

Table 1: Summary statistics: interest rates and futures data

count mean std min 25% 50% 75% max

iUSDT
D 15996.0 5.757 3.968 0.459 3.499 4.123 6.670 40.725

iETH
D 15996.0 3.944 3.486 0.034 1.914 2.669 4.546 30.983

iUSDT
L 15996.0 2.832 0.397 2.206 2.615 2.762 2.972 8.957

iETH
L 15996.0 0.129 0.103 0.027 0.072 0.105 0.171 2.284

iUSDT
L − iETH

L 15996.0 2.925 4.061 -6.655 0.645 1.326 3.939 38.161

iUSDT
D − iETH

D 15996.0 3.816 3.493 -1.440 1.772 2.561 4.430 30.897

st 15912.0 2331.589 1086.287 374.063 1530.305 2185.513 3150.925 4847.063

ft 15996.0 2333.849 1086.697 373.770 1533.492 2190.435 3153.455 4852.080

ft − st 15912.0 0.020 0.117 -8.664 -0.047 -0.006 0.076 1.559

δt 15912.0 0.023 0.045 -0.487 0.006 0.010 0.024 0.375

Note: This table presents summary statistics of key variables in empirical analysis. iUSDT
D and iETH

D measure the interest rates on depositing USDT and ETH.
iUSDT
L and iETH

L measure the interest rates on borrowing USDT and ETH. st and ft are spot and perpetual futures ETH/USDT prices. δt is the funding rate
on perpetual futures contracts. Interest rates are annualized in percentage points. The funding rate is in percentage points per 8 hour interval. Sample is hourly
data from November 1st, 2020 to October 23rd, 2022.
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Table 2: Determinants of ETH-USDT long and short positions using wallet-transaction level data

(1) (2) (3) (4) (5) (6) (7) (8) (9)

long-short long-short long-short long long long short short short

forward premium 1.3348*** 1.8288** 2.8881*** 1.2856*** 1.7693** 2.8163** -0.0492** -0.0595** -0.0718**

(0.4901) (0.7787) (1.1167) (0.4864) (0.7738) (1.1140) (0.0233) (0.0295) (0.0335)

funding rate -1.3265 -1.2674 -1.2987 -1.2348 0.0278 0.0326

(0.9877) (1.3082) (0.9850) (1.3062) (0.0248) (0.0293)

σETH/USDT -3.5548* -3.2152 0.3396**

(1.9906) (1.9834) (0.1338)

Intercept 0.5449*** 0.5689*** 0.8966*** 0.5563*** 0.5798*** 0.8786*** 0.0114*** 0.0109*** -0.0180**

(0.0572) (0.0632) (0.1890) (0.0570) (0.0630) (0.1888) (0.0029) (0.0028) (0.0087)

R-squared 0.0195 0.0228 0.0566 0.0182 0.0214 0.0527 0.0148 0.0156 0.0653

No. observations 265 265 235 265 265 235 265 265 235

Note: Table presents regressions of the fundamentals of aggregate long and short positions using wallet transaction-level data. Long positions aggregate USDT
borrowed by investors that deposit ETH as collateral on the Compound protocol. Short positions aggregate ETH borrowed by wallets that deposit USDT as
collateral on the protocol. long−short measures the difference between long and short positions. The forward premium is the difference between futures and spot
prices of ETH/USDT, and funding rate is a rate paid by long position holders to the short position every 8 hours on a perpetual futures contract. σETH/USDT is
a 30 day rolling standard deviation of ETH/USDT exchange rate. The sample is daily from 1st January 2021 to 22nd April 2023. All explanatory variables are
measured in per cent. White heteroscedasticity robust standard errors are used in estimation. *** denotes significance at the 1 percent level, ** at the 5 percent
level, and * at the 10 percent level.
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Table 3: Determinants of Interest Rate Differential: iUSDT
L − iETH

L

(1) (2) (3) (4) (5) (6)

iUSDT
L − iETH

L iUSDT
L − iETH

L iUSDT
L − iETH

L iUSDT
L − iETH

L iUSDT
L − iETH

L iUSDT
L − iETH

L

forward premium 0.0100*** 0.0054*** 0.0056*** 0.0005 0.0020** 0.0020**

(0.0011) (0.0013) (0.0013) (0.0010) (0.0010) (0.0010)

funding rate 0.0145*** 0.0136*** 0.0053** 0.0079*** 0.0081***

(0.0028) (0.0027) (0.0023) (0.0024) (0.0023)

σiETH
-0.0022*** -0.0027*** -0.0025*** -0.0025***

(0.0006) (0.0006) (0.0006) (0.0006)

σiUSDT
0.0017*** 0.0017*** 0.0017***

(0.0001) (0.0001) (0.0001)

wealth ratio -0.0005*** -0.0005***

(0.0001) (0.0001)

σETH/USDT 0.0001

(0.0001)

Intercept 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000***

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

R-squared 0.0569 0.0754 0.0780 0.4396 0.4536 0.4552

No. observations 2162 2162 2160 2160 2160 2159

Note: Table presents regressions of the fundamentals of the interest rate difference. ird measures the difference between the USDT interest rate and ETH interest
rate (annualized) in basis points. The forward premium is the difference between futures and spot prices of ETH/USDT, and funding rate is a rate paid by long
position holders to the short position every 8 hours on a perpetual futures contract. σETH/USDT ,σiETH

and σiUSDT
is a 24 hour rolling standard deviation of

ETH/USDT exchange rate, ETH and USDT interest rates. The sample period is from 12th November 2021 to 23rd October 2022. All explanatory variables are
measured in per cent. Sample is from November 1st, 2020 to October 23rd, 2022, and is based on 8 hour intervals at UTC 0:00, 8:00 and 16:00 which correspond
to when the funding rate is paid by long futures holders to short futures holders on perpetual futures contracts. White heteroscedasticity robust standard errors
are used in estimation. *** denotes significance at the 1 percent level, ** at the 5 percent level, and * at the 10 percent level.
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Table 4: CIP summary statistics

count mean std min 25% 50% 75% max

|cip| 15912.0 7.049 9.390 0.001 3.102 5.532 8.731 866.496

cip 15912.0 1.688 11.620 -866.496 -4.821 -0.843 7.247 155.742

No gas fees

cip (Lower Bound) 15996.0 -0.166 0.074 -0.944 -0.168 -0.143 -0.132 -0.039

cip (Upper Bound) 15996.0 0.348 0.319 -0.131 0.162 0.234 0.405 2.822

cip Violation (Lower Bound) 15996.0 0.523 0.500 0.000 0.000 1.000 1.000 1.000

cip Violation (Upper Bound) 15996.0 0.453 0.498 0.000 0.000 0.000 1.000 1.000

cip Violation 15996.0 0.976 0.153 0.000 1.000 1.000 1.000 1.000

Gas fees

cip (Lower Bound) 15996.0 -28.808 19.049 -122.146 -42.240 -24.144 -12.775 -2.944

cip (Upper Bound) 15996.0 28.991 19.125 2.872 12.900 24.268 42.397 122.197

cip Violation (Lower Bound) 15996.0 0.048 0.213 0.000 0.000 0.000 0.000 1.000

cip Violation (Upper Bound) 15996.0 0.010 0.098 0.000 0.000 0.000 0.000 1.000

cip Violation 15996.0 0.057 0.233 0.000 0.000 0.000 0.000 1.000

Note: This table presents summary statistics of CIP deviations. The upper panel presents summary statistics when no gas fees are accounted for. Lower and
upper bounds for CIP deviations without gas fees are based on equation (37), and violations measure the fraction of CIP deviations that exceed the lower
and upper bounds. The lower panel presents summary statistics after accounting for gas fee, which is the median transaction fee paid to miners on Ethereum
blockchain and calculated by coinmetrics. Sample is hourly data from November 1st, 2020 to October 23rd, 2022.
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Table 5: Determinants of ETH/USDT CIP Deviations

(1) (2) (3) (4)

|CIP | |CIP | |CIP | |CIP |

gas fee 0.0568*** 0.0569*** 0.0569*** 0.0588***

(0.0061) (0.0061) (0.0061) (0.0062)

1.[RETH/USDT > 2std] 0.0002** 0.0003** 0.0002***

(0.0001) (0.0002) (0.0001)

1.[RETH/USDT < 2std] 0.0002 0.0001**

(0.0001) (0.0000)

σETH/USDT 0.0056***

(0.0013)

Intercept 0.0005*** 0.0005*** 0.0003** 0.0002***

(0.0000) (0.0000) (0.0001) (0.0000)

R-squared 0.0470 0.0506 0.0508 0.0659

No. observations 2156 2156 2156 2095

Note: Table presents regressions of the fundamentals of absolute CIP violations. |CIP | is the absolute
CIP violation and is the sum of three components: the futures premium, the funding rate, and the
(negative of) interest rate difference between USDT and ETH. Explanatory variables include the gas
fee, which is the median transaction fee paid to miners on Ethereum blockchain and calculated by
coinmetrics. 1.[RETH/USDT > 2std] and 1.[RETH/USDT < 2std] are indicator variables for ETH/USDT
returns that are greater or less than 2 standard deviations. σETH/USDT is a rolling standard deviation
of ETH/USDT. The sample period is from 12th November 2021 to 23rd October 2022. All variables
are measured in per cent. Sample is from November 1st, 2020 to October 23rd, 2022, and is based on 8
hour intervals at UTC 0:00, 8:00 and 16:00 which correspond to when the funding rate is paid by long
futures holders to short futures holders on perpetual futures contracts. White heteroscedasticity robust
standard errors are used in estimation. *** denotes significance at the 1 percent level, ** at the 5 percent
level, and * at the 10 percent level.
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Table 6: Determinants of future spot changes in ETH-USDT

(1) (2) (3) (4)

rt+h rt+h rt+h rt+h

forward premium 0.4320 -1.8995

(0.7668) (1.4347)

funding rate 3.8359* 4.6495

(1.9803) (3.0709)

iUSDT
L − iETH

L 17.2471 6.7997

(19.6166) (20.9461)

σETH/USDT 0.1903

(0.2041)

wealth ratio 0.1243*

(0.0677)

Intercept 0.0005 -0.0003 0.0001 -0.0031*

(0.0007) (0.0008) (0.0008) (0.0019)

R-squared 0.0001 0.0029 0.0004 0.0065

No. observations 2160 2160 2160 2157

Note: Table presents regressions of the fundamentals of UIP violations. rt+h is the per cent change in
the 8 hour ahead spot rate. The forward premium is the difference between futures and spot prices of
ETH/USDT, and funding rate is a rate paid by long position holders to the short position every 8 hours
on a perpetual futures contract. σETH/USDT is a rolling standard deviation of ETH/USDT. Sample is
from November 1st, 2020 to October 23rd, 2022, and is based on 8 hour intervals at UTC 0:00, 8:00
and 16:00 which correspond to when the funding rate is paid by long futures holders to short futures
holders on perpetual futures contracts. All variables are measured in per cent. White heteroscedasticity
robust standard errors are used in estimation. *** denotes significance at the 1 percent level, ** at the
5 percent level, and * at the 10 percent level.
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Online Appendix to

“DeFi Lending Protocols and the Carry Trade”
(Not for publication)

A Model Derivations

Proof of Proposition 1.

Both types of investor solve the following constrained optimization problem:

Optimists’ Lagrangian function is given as follows:

L(∆O) = E
[
W̃O

]
− 1

2
γV ar

[
W̃O

]
+ λ1∆O + λ2(∆̄−∆O) (62)

Expected wealth of optimists is

E
[
W̃O

]
= WO(µ+ + ∆O(µ+ − 1) + iED −∆Oi

U
L) (63)

= WO

(
µ+ + ∆O(µ+ − 1) +

bE(1− θ)∆2
PW

2
P

W 2
O

− bU∆2
OWO

WP

)
(64)

Variance of future wealth of optimists:

V ar
[
W̃O

]
= W 2

O(1 + ∆O)2σ2. (65)

The first-order condition of the optimization problem (62) is

∂L

∂∆O

= WO

[
(µ+ − 1)− 2bUWO∆O

WP

]
− γW 2

Oσ
2(1 + ∆O) + λ1 − λ2. (66)

In region 0 < ∆O < ∆̄ and λ1 = λ2 = 0 we can derive an expression for the optimal

leverage ratio of investor O:

0 = WO

[
(µ+ − 1)− 2bUWO∆O

WP

]
− γW 2

Oσ
2(1 + ∆O), (67)

∆O =
WP

WO

(
µ+ − 1− γσ2WO

γσ2WP + 2bU

)
. (68)

Pessimists’ Lagrangian function is given as follows:

L(∆P ) = E
[
W̃P

]
− 1

2
γV ar

[
W̃P

]
+ λ1∆P + λ2(∆̄−∆P ) (69)

Expected wealth of pessimists is:

E
[
W̃P

]
= WP (1 + ∆P (1− µ−) + iUD −∆P i

E
L ) (70)



= WP

(
1 + ∆P (1− µ−) +

bU(1− θ)∆2
OW

2
O

W 2
P

− bE∆2
PWP

WO

)
. (71)

Variance of future wealth of pessimists:

V ar
[
W̃P

]
= W 2

P∆2
Pσ

2. (72)

The first-order condition of the optimization problem (62) is

∂L

∂∆P

= WP

[
(1− µ−)− 2bEWP∆P

WO

]
− γW 2

Pσ
2∆P + λ1 − λ2. (73)

In region 0 < ∆P < ∆̄ and λ1 = λ2 = 0 we can derive an expression for the optimal

leverage ratio of investor P :

0 = WP

[
(1− µ−)− 2bEWP∆P

WO

]
− γW 2

Pσ
2∆P , (74)

∆P =
WO

WP

(
1− µ−

γσ2WO + 2bE

)
. (75)

Partial derivatives of the optimal demand functions with respect to slope parameters

bE and bU are:

∂∆O

∂bU
=

−2∆O

γσ2WP + 2bU
(76)

and

∂∆P

∂bE
=

−2∆P

γσ2WO + 2bE
. (77)

Substituting in the formula for the slope parameter (20) and (21), optimal bE and bU

is given as:

bE =
γσ2WO

2
, (78)

bU =
γσ2WP

2
. (79)

This, in turn, determines the optimal demands functions as:

∆O =
p+/p0 − 1− γσ2WO

2γσ2WO

, (80)

∆P =
1− p−/p0

2γσ2WP

. (81)

Q.E.D.



B Long-short positions: Robustness using ETH-USDC

and ETH-DAI

Figure A1: Aggregate long and short positions for ETH-USDC and ETH-DAI

2021-01
2021-04

2021-07
2021-10

2022-01
2022-04

2022-07
2022-10

2023-01
2023-04

0

5

10

15

20

25

US
DC

 B
illi

on
s

Long and Short Positions
Long:Deposit ETH, Borrow USDC
Short:Deposit USDC, Borrow ETH

2021-01
2021-04

2021-07
2021-10

2022-01
2022-04

2022-07
2022-10

2023-01
2023-04

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

DA
I B

illi
on

s

Long and Short Positions

Long:Deposit ETH, Borrow DAI
Short:Deposit DAI, Borrow ETH

Note: Figure plots the aggregate long and short positions using transaction data at the wallet level. Long

positions (measured along the positive y-axis) aggregate USDT borrowed by investors that deposit ETH

as collateral on the Compound protocol. Short positions (measured along the negative y-axis) aggregate

ETH borrowed by wallets that deposit USDT as collateral on the protocol. Sample is daily from 1st

January 2021 to 22nd April 2023.



Table A1: Determinants of ETH-USDC long and short positions using wallet-transaction level data

(1) (2) (3) (4) (5) (6) (7) (8) (9)

long-short long-short long-short long long long short short short

forward premium 4.8968*** 5.0852*** 6.6052*** 3.2282*** 3.8439*** 5.1451*** -1.6686*** -1.2412*** -1.4601***

(0.7597) (1.1031) (1.2451) (0.6612) (1.0010) (1.1651) (0.2752) (0.3228) (0.3796)

funding rate -0.5446 0.1337 -1.7804 -1.4272 -1.2357** -1.5608**

(1.6833) (1.9351) (1.4303) (1.6987) (0.6072) (0.7417)

σETH/USDT 8.3211** 7.8379* -0.4833

(4.1622) (4.0544) (0.8123)

Intercept 0.6152*** 0.6246*** 0.2352 0.8575*** 0.8880*** 0.5262*** 0.2423*** 0.2634*** 0.2910***

(0.0558) (0.0656) (0.2100) (0.0483) (0.0568) (0.2026) (0.0252) (0.0279) (0.0497)

R-squared 0.0740 0.0741 0.1154 0.0429 0.0447 0.0823 0.0495 0.0534 0.0564

No. observations 643 643 613 643 643 613 643 643 613

Note: Table presents regressions of the fundamentals of aggregate long and short positions using wallet transaction-level data. Long positions aggregate USDC
borrowed by investors that deposit ETH as collateral on the Compound protocol. Short positions aggregate ETH borrowed by wallets that deposit USDC as
collateral on the protocol. long−short measures the difference between long and short positions. The forward premium is the difference between futures and spot
prices of ETH/USDT, and funding rate is a rate paid by long position holders to the short position every 8 hours on a perpetual futures contract. σETH/USDT is
a 30 day rolling standard deviation of ETH/USDT exchange rate. The sample is daily from 1st January 2021 to 22nd April 2023. All explanatory variables are
measured in per cent. White heteroscedasticity robust standard errors are used in estimation. *** denotes significance at the 1 percent level, ** at the 5 percent
level, and * at the 10 percent level.



Table A2: Determinants of ETH-DAI long and short positions using wallet-transaction level data

(1) (2) (3) (4) (5) (6) (7) (8) (9)

long-short long-short long-short long long long short short short

forward premium 1.6782*** 1.5949*** 1.8601*** 1.0450*** 1.0500** 1.2612** -0.6332*** -0.5449*** -0.5989***

(0.3679) (0.5456) (0.6230) (0.3313) (0.5100) (0.5926) (0.1038) (0.1165) (0.1282)

funding rate 0.2374 1.0707 -0.0142 0.7330 -0.2517 -0.3378*

(0.9727) (1.1434) (0.9132) (1.0999) (0.1586) (0.1812)

σETH/USDT 5.1843*** 4.1295** -1.0547***

(1.9897) (1.9405) (0.3416)

Intercept 0.3750*** 0.3709*** 0.0987 0.4575*** 0.4577*** 0.2416** 0.0825*** 0.0868*** 0.1429***

(0.0322) (0.0357) (0.1132) (0.0292) (0.0326) (0.1090) (0.0111) (0.0118) (0.0255)

R-squared 0.0329 0.0330 0.0625 0.0155 0.0155 0.0378 0.0435 0.0445 0.0515

No. observations 580 580 556 580 580 556 580 580 556

Note: Table presents regressions of the fundamentals of aggregate long and short positions using wallet transaction-level data. Long positions aggregate DAI
borrowed by investors that deposit ETH as collateral on the Compound protocol. Short positions aggregate ETH borrowed by wallets that deposit DAI as
collateral on the protocol. long−short measures the difference between long and short positions. The forward premium is the difference between futures and spot
prices of ETH/USDT, and funding rate is a rate paid by long position holders to the short position every 8 hours on a perpetual futures contract. σETH/USDT is
a 30 day rolling standard deviation of ETH/USDT exchange rate. The sample is daily from 1st January 2021 to 22nd April 2023. All explanatory variables are
measured in per cent. White heteroscedasticity robust standard errors are used in estimation. *** denotes significance at the 1 percent level, ** at the 5 percent
level, and * at the 10 percent level.



Figure A2: VAR impulse responses: feedback effects of forward premia, ETH-USDC
long-short positions and the funding rate
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Impulse responses

Note: Figure plots the impulse responses of a VAR with three variables: the forward premium, the

funding rate and the aggregate long-short positions. longshort is measured as the difference between

long (deposit ETH and borrow USDC) and short (deposit USDC and borrow ETH) position using

wallet-level data, in billions USD. The forward premium is the difference between futures and spot prices

of ETH/USDT, and funding rate is a rate paid by long position holders to the short position every 8

hours on a perpetual futures contract. 1 lag is included in the baseline specification and daily data is

used for the analysis. Dotted lines denote a standard error band equivalent for statistical significance at

the 5% level



Figure A3: VAR impulse responses: feedback effects of forward premia, ETH-DAI long-
short positions and the funding rate
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Impulse responses

Note: Figure plots the impulse responses of a VAR with three variables: the forward premium, the

funding rate and the aggregate long-short positions. longshort is measured as the difference between

long (deposit ETH and borrow DAI) and short (deposit DAI and borrow ETH) position using wallet-

level data, in billions USD. The forward premium is the difference between futures and spot prices of

ETH/USDT, and funding rate is a rate paid by long position holders to the short position every 8 hours

on a perpetual futures contract. 1 lag is included in the baseline specification and daily data is used for

the analysis. Dotted lines denote a standard error band equivalent for statistical significance at the 5%

level


	Introduction
	Related literature
	Definitions and Data
	Collateralized Lending
	Governance
	Collateral factors and liquidations
	Data and Summary Statistics
	Lending Protocol: Compound
	Transaction-level data
	Perpetual Futures


	Model
	Spot market trading
	DeFi lending and borrowing
	Governance Block

	Spot market equilibrium
	Futures market
	Testable implications

	Empirical Evidence
	Integration between lending protocols and futures markets: transaction level data
	Dynamic effects

	Determinants of interest rate differential
	Dynamic effects

	Covered Interest Rate Parity Deviations
	Determinants of CIP deviations

	Return predictability

	Conclusion
	Model Derivations
	Long-short positions: Robustness using ETH-USDC and ETH-DAI

