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Abstract

In this paper we study the macroeconomic effects of introducing a retail central
bank digital currency (CBDC). Using a two agent framework and endowment
economy with banked and unbanked households, we show CBDCs address
financial inclusion of the unbanked by providing a savings vehicle to allow
households to smooth consumption. Finally, we study the monetary policy
implications in a New Keynesian setting. Welfare gains under Ramsey optimal
monetary policy are higher for a retail CBDC with a primarily unbanked
population. When CBDC and deposits are near substitutes, optimal policy
requires the CBDC rate to track policy rates. Taken together, our findings
suggest a stronger use case for CBDCs in emerging economies with a lower
degree of financial inclusion.
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1 Introduction

Central bank digital currency (CBDC) are digital tokens, similar to a cryptocur-

rency, issued by a central bank. Central banks are actively studying the potential

adoption of CBDCs, and notable examples include Sweden’s E-Krona and China’s

Digital Currency Electronic Payment. In this emerging macroeconomics literature

there is a focus on the macroeconomic effects (Barrdear and Kumhof 2022; Assen-

macher, Bitter, and Ristiniemi 2022; Burlon et al. 2022; George, Xie, and Alba

2020; Ikeda 2020; Benigno, Schilling, and Uhlig 2022; Kumhof et al. 2021; Cong and

Mayer 2021), and implications for banking and financial stability (Brunnermeier

and Niepelt 2019; Niepelt 2020; Fernández-Villaverde et al. 2021; Agur, Ari, and

Dell’Ariccia 2022; Andolfatto 2021; Chiu et al. 2019; Keister and Sanches 2021;

Benigno 2019; Skeie 2019; Ramadiah, Galbiati, and Soramäki 2021; Hemingway

2022; Kim and Kwon 2022). While CBDCs present obvious advantages – improv-

ing cross-border payments, and facilitating fiscal transfers – there are still many

unresolved issues in their design. For example, do CBDCs increase welfare of the

unbanked through financial inclusion? Do CBDCs attenuate or amplify monetary

policy transmission channels? Should the interest rate on the CBDC be adjustable

or fixed? Are there implications for redistribution through taxes and subsidies on

CBDC?

In answering these questions, our paper focuses on CBDC design and in partic-

ular the financial inclusion effects of introducing a digital currency.1 The paper is

divided into two parts. In the first part, we start with a simple two agent endowment

economy with a representative banked household (BHH) and unbanked household

(UHH). The unbanked use money while the banked have access to deposits.2 We

introduce a digital currency that can be used by the UHH as an alternative to cash.

The central bank can pay an interest rate on this retail CBDC. The primary benefit

of this digital currency is that it is a more effective savings vehicle as it relaxes the

cash-in-advance (CIA) constraint of the UHH. Welfare for both sets of households

improve with a retail CBDC.

In the next part of the paper, we then extend the model to include production

and endogenous labor supply, monopolistic pricing of firms, a financial intermediary

1. For more detail on the taxonomy of CBDC designs we refer readers to Auer and Böhme
(2020). They discuss many aspects of CBDC design, such as whether the CBDC uses a distributed
ledger technology (DLT), is account or token based or wholesale or retail. In this paper we focus
solely on retail CBDCs.

2. The BHH and UHH can be thought of as Ricardian and non-Ricardian households, respec-
tively, as is typical in the two-agent New Keynesian literature. See, for example, Debortoli and
Gaĺı (2017).
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that lends to firms that use capital in production, and monetary policy set by a

central bank. This New Keynesian setup allows us to evaluate optimal monetary

policy rules and the role financial intermediaries play in the transmission effects of

a CBDC. Using this model, we simulate the economy with respect to productivity

shocks, cost-push inflationary shocks, and monetary policy shocks.

First, we address the question on whether a CBDC attenuates or amplifies the

transmission of monetary policy. Our results suggest that monetary policy transmis-

sion is stronger upon introducing a CBDC, and amplifies the economy with respect

to fundamental shocks to productivity. The intuition is straightforward: monetary

policy has an additional lever in a CBDC economy as the central bank sets the

rate on digital currency deposits, which tracks the policy rate in our specification.

The UHH is therefore more sensitive to changes in the policy rate. This translates

to more sensitive changes of bank net worth and leverage to monetary policy, am-

plifying the response of capital and production through bank balance sheets via a

financial accelerator mechanism (Bernanke, Gertler, and Gilchrist 1999; Kiyotaki

and Moore 1997, 2019).

Second, we use our model to evaluate the welfare effects of the introduction of the

CBDC relative to an economy with no digital currency. Similar to our endowment

economy, we show distributional effects on welfare, with gains of CBDC adoption

concentrated for the unbanked share of the population. In contrast, banked house-

holds benefit less from the introduction of a CBDC due to digital currency being an

imperfect substitute for commercial bank deposits. A welfare analysis shows that

the greatest use case for CBDCs therefore lies in an economy with low levels of

financial inclusion.

A final research question we answer is on elements of CBDC design and macro-

prudential policy. We conduct a Ramsey policy exercise to evaluate the path of

monetary policy that maximizes welfare of households. The policy instruments in-

clude both the central bank rate on household deposits and the digital currency

deposits rate. The social planner maximizes a weighted average of banked and

unbanked household utility subject to the two policy instruments. This is a non-

parametric estimation of interest rates that deviates from more traditional methods

of interest-rate setting such as the Taylor rule.

Our framework allows us to test alternative regimes for the CBDC monetary

policy implementation, such as whether the CBDC rate should be adjustable or fixed.

The optimal policy results show that when CBDC deposits are a near substitute to

regular deposits, it is optimal for the CBDC rate to track movements in the deposit

rate. Welfare results show that a fixed rate in fact leads to net welfare losses in
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aggregate relative to the economy with no digital currency.

We also show how CBDC rates that are a spread above or below deposit rates

have distributional implications on welfare. Our welfare results show that unbanked

households are better off when CBDC rates are higher than the deposit rate. Ex-

plaining these findings, we note that the unbanked benefit through the savings chan-

nel, where digital currency deposits receive a higher rate of interest. Alternatively,

banked households are worse off when CBDC rates are high because the banker faces

adjustment costs in holding a larger amount of CBDC, with a negative impact on

bank equity.

Turning to macroprudential policy, we explore the distributive implications of

introducing taxes on household digital currency deposits. A tax-neutral policy raises

revenue from banked households and subsidize unbanked households. We show

that these transfers increase aggregate welfare. The intuition is straightforward:

the marginal welfare gains of subsidising CBDC deposits for the UHH exceeds the

marginal welfare cost of taxing CBDC deposits for the BHH.

The remainder of the paper is structured as follows. In Section 1.1 we summarize

the contributions of our paper to the related literature. In Section 2 we outline

the baseline endowment economy to clarify our intuition, and examine the welfare

implications of introducing a CBDC. In Section 3 we introduce a two-agent New

Keynesian (TANK) model with a banking sector. Using this model we examine

welfare implications of introducing the CBDCs, including optimal policy exercises

for when a social planner can set interest rates on both fiat and digital currencies.

Section 4 considers CBDC design and macroprudential policy. Section 5 concludes

the paper.

1.1 Related Literature

Our work relates to an emerging literature on CBDCs. The first strand of litera-

ture is on the implications for financial stability (Brunnermeier and Niepelt 2019;

Niepelt 2020; Fernández-Villaverde et al. 2021; Agur, Ari, and Dell’Ariccia 2022;

Andolfatto 2021; Chiu et al. 2019; Keister and Sanches 2021; Benigno 2019; Skeie

2019; Ramadiah, Galbiati, and Soramäki 2021; Hemingway 2022; Kim and Kwon

2022). Financial stability considerations include studying the competition between

bank deposits and CBDCs. For example, Keister and Sanches (2021) determine

conditions in which the private sector is dis-intermediated with CBDC leading to

welfare losses. Chiu et al. (2019) study the role of CBDCs when banks have mar-

ket power, and show the introduction of CBDCs can lead to increased competition

among banks, an increase in deposit rates and lending raising welfare. In contrast to
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these papers, our study focuses on the benefits of CBDCs in a two-agent framework.

By studying households that do not have access to a financial asset, we focus on

the financial inclusion benefits of a retail CBDC. The novelty of our framework in

this literature is to include an additional set of households (the unbanked) that do

not have access to domestic banking channels. Critically, the unbanked only have

access to digital currency as a medium of exchange and savings vehicle. Within

this literature we are the first paper to evaluate the welfare benefits of retail CBDC

designs.

Turning to the macroeconomic effects, there is an emerging literature that deals

with the closed economy (Barrdear and Kumhof 2022; Assenmacher, Bitter, and

Ristiniemi 2022; Burlon et al. 2022) and open economy implications (George, Xie,

and Alba 2020; Ikeda 2020; Benigno, Schilling, and Uhlig 2022; Kumhof et al. 2021;

Cong and Mayer 2021). Closed economy considerations include a discussion of

optimal monetary policy Burlon et al. (2022), the use of CBDC in a monetarist

framework Assenmacher, Bitter, and Ristiniemi (2022), and the introduction of

CBDC on output and the ability to stabilize business cycle fluctuations Barrdear

and Kumhof (2022). Open economy considerations include Benigno, Schilling, and

Uhlig (2022) which derives an equilibrium result of synchronization of interest rates

across the two countries in which users are indifferent between holding the global

cryptocurrency and the domestic currency. Ferrari Minesso, Mehl, and Stracca

(2022) use a two country framework and find productivity spillovers are amplified

in the presence of a CBDC. Within this literature, we contribute mainly to an

understanding of optimal monetary policy transmission. Crucially, we find that

monetary policy transmission is strengthened with the introduction of CBDC. By

providing a savings vehicle to the unbanked, they are able to smooth consumption.

However, this makes unbanked households more sensitive to the policy rate. Second,

we show that when CBDC and bank deposits are near substitutes it is optimal for

CBDC rates to track the policy rate. Third, our two agent framework allows us to

consider redistributive taxes to increase welfare. To increase the financial inclusion

effects of a CBDC, taxing banked household use of CBDC and subsidizing the CBDC

of unbanked households can increase welfare.
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2 Two-Agent Endowment Economy Model with

Central Bank Digital Currency

Below we introduce a simple two-agent endowment economy featuring CBDCs. The

model is comprised of two types of households: the banked and the unbanked,

denoted with j = h and j = u, respectively. The population is normalized to

unity, with the two types of households occupying the continuum [0, 1]. The BHH is

proportion Γh of the population. The banked have access to a one-period risk-free

savings asset, Dt, which pay a gross nominal rate of interest, Rt, and are in zero net

supply. Conversely, the unbanked, of proportion Γu = 1−Γh, do not have access to

the risk-free savings asset.

However, our endowment economy features an additional asset, DCt, which rep-

resents a CBDC or digital currency, and it is accessible and traded by both types of

agents. In this simple setup, DCt is in zero net supply, and, importantly, holdings

of it earn a nominal return of RDC
t .

The infinite horizon problem for the representative BHH is:

Vh
t = max

{Ch
t+s,Dt+s,DCh

t+s}∞s=0

Et

∞∑
s=0

βsu(Ch
t+s),

subject to the period budget constraint (in real terms):

Ch
t +Dt +DCh

t + χDC
t = T h

t +
Rt−1Dt−1 +RDC

t−1DC
h
t−1

πt
,

where Cj
t , is consumption, T j

t are lump sum transfers, and πt is gross inflation,
3 and

DCj
t are digital currency balances held by households of type j. In our setup, χDC,j

t

represents a cost of converting digital currencies for excess borrowing and lending,

the extent of which is governed by cost parameter κDC :4

χDC,j
t =

κDC

2

(
DCj

t

)2
. (1)

The analogous problem for the representative UHH is:

Vu
t = max

{Cu
t+s,DCu

t+s}∞s=0

Et

∞∑
s=0

βsu(Cu
t+s),

3. Gross inflation, πt, is defined as πt = Pt/Pt−1, where Pt is the price level.
4. We note that as κDC → 0, the digital currency DC becomes a perfect substitute for the risk-

free savings asset D; and so the quantities of digital currency are indeterminate in equilibrium.
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subject to their budget constraint,

Cu
t +Mt +DCu

t + χDC,u
t + χM

t = T u
t +

Mt−1 +RDC
t−1DC

u
t−1

πt
,

and the cash-in-advance (CIA) constraint,

αMC
u
t ≤ Mt−1

πt
, (2)

where χM
t are money adjustment costs of the form:

χM
t =

ϕM

2
(Mt − M̄)2. (3)

The CIA constraint features parameter αM ∈ (0, 1) which implies that even with

digital currencies, the UHH must settle a certain fraction of their consumption

purchasing decisions via real money holdings.

We also define ωt as being an inequality measure, defined as:

ωt = 1− Cu
t

Ch
t

, (4)

with higher (lower) values of ωt showing an increase (decrease) in consumption

inequality between the BHH and UHH in period t.

We assume that there exists a monetary authority which oversees real money

balances. We assume the following law of motion for real money balances:

Mt =
Mt−1

πt
. (5)

Additionally, since DCt is in zero net supply, we have the following aggregate con-

dition:

DCu
t = −Γh

Γu

DCh
t .

Finally, endowments are set exogenously and follow a stationary AR(1) process:

lnT i
t = ρT lnT j

t−1 + εTt ,

where εTt is an exogenous disturbance to both endowments with variance σ2
T .

For a full set of equilibrium conditions for the economy economy both with

and without CBDCs, please refer to Appendix A.1. We also show model impulse

response functions (IRFs) to orthogonal shocks in Appendix A.1.5. Additionally,
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for a description of the parameterization used in our analyses, please refer to Table

2 in Section 3.6.

2.1 Welfare Benefits of Financial Inclusion

To analyse the benefits of financial inclusion through the provision of CBDCs, we

compare the ergodic mean5 of welfare for the BHH, UHH, and a synthetic aggregate

household:6

Wj = F
(
Var(Cj)

)
, j = {h, u}, (6a)

Wagg = ΓhWh + ΓuWu. (6b)

2.1.1 CBDC Autarky

Figure 1 plots the ratio of welfare of the representative BHH to the UHH as a function

of the variance of the endowment shock process in an economy with no CBDC. We

show that as the variance of the endowment shock increases, the relative welfare of

the banked increases. This supports our hypothesis of financial inclusion. As banked

households have an efficient savings vehicle to smooth consumption, their relative

welfare increases when there are larger shocks to income. They are able to smooth

consumption through the intertemporal consumption Euler equation. On the other

hand, the unbanked can only smooth consumption through money holdings, and

are impaired in their ability to smooth idiosyncratic shocks due to the presence of

the CIA constraint. Based on our calibration, when the volatility of the endowment

process is set to 1% (quarterly), the BHH sees an almost 30% welfare gain over the

UHH; when volatility is set to 10% (quarterly), the BHH sees an over 80% welfare

gain over the UHH.

5. To clarify, we take a second-order approximation about the deterministic steady state, subject
the economy to our specified shocks, and then simulate the model for 2,000 periods to obtain the
mean value of the variables of interest.

6. We adjust the population proportion of the representative BHH and UHH when constructing
aggregate variables.
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Figure 1: Banked to unbanked relative welfare for a no-CBDC economy (% ch.)
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Note: Figure plots the ratio of the ergodic mean of welfare for the representative BHH and UHH,

for increasing variance in the endowment shock process. The proportion of banked and unbanked

households are set to a baseline value of Γh = Γu = 0.5.

2.1.2 CBDC Introduction

We highlight the importance of financial inclusion through the introduction of CBDC

to both the BHH and UHH. In Figure 2a we plot the relative welfare gains for each

representative household for the baseline endowment economy with CBDC over the

endowment economy without CBDC. Our analysis shows that the welfare gains for

the UHH are significant and scale with the volatility of the endowment process. For

example, when the quarterly endowment volatility is 1%, the gains to the BHH are

0.19%, and the gains to UHH are 22.4%. When the endowment volatility increases

to 10%, the relative welfare gain for the UHH increases to approximately 60%. In

contrast, the welfare gains for the BHH are 8% as deposits are the first-best risk-free

asset.

We now conduct the same welfare analysis with respect to the share of the banked

population, keeping the volatility of the endowment shock fixed. In Figure 2b, we

plot the relative welfare gains for each representative household against the share of

the banked population. In line with our previous results, aggregate welfare effects

of the CBDC is decreasing in the share of BHH. When the share of BHH is 1, there

are no gains from financial inclusion, and the relative welfare gains of introducing

a CBDC are zero. In contrast, the relative gains of the CBDC economy approach

60% when the share of BHH is 0.1. Taken together, our findings suggest that the

welfare benefits of CBDCs are higher in economies with lower degrees of financial
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inclusion and a higher share of the unbanked.

Figure 2: Welfare improvement decomposition

(a) Relative welfare and endowment volatility (% ch.)
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(b) Relative welfare and banked population (% ch.)
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Note: Figure 2a plots the relative welfare gains of an economy with CBDC compared to an economy

without CBDC for the representative BHH, UHH, and aggregate household for increasing variance

in the endowment shock process. The proportion of banked and unbanked households are set to

a baseline value of Γh = Γu = 0.5. Figure 2b plots the relative welfare gains of an economy with

CBDC compared to an economy without CBDC for the representative BHH, UHH, and aggregate

household for increasing proportion of the banked population while keeping σT = 0.1 fixed.
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3 Two-Agent New Keynesian Model with Central

Bank Digital Currency

In this section, we extend the model presented in Section 2 in two ways: i) the

introduction of a banking sector accompanied with credit frictions; and ii) a supply

side of the economy with price stickiness and monopolistic competition (Christiano,

Eichenbaum, and Evans 2005; Smets and Wouters 2007; Gaĺı 2015) to build a two-

agent New Keynesian (TANK) model as in Bilbiie (2018), Bilbiie and Ragot (2021),

and Debortoli and Gaĺı (2017, 2022).

We adopt the setup of Gertler and Karadi (2011), introducing a third type of

agent – bankers – which allows us to maintain a representative setup of the household

sector. In this setup, banked households hold claims on deposits – denominated in

both fiat currency and digital currency – which are held at banks, and they may

also directly invest in firms by purchasing equity holdings. Unbanked households

are still limited to money holdings and digital currencies; the latter of which are

also deposited into the banking sector. Banks then convert deposits into credit,

facilitating loans to firms who acquire capital for the means of production, as in

Gertler and Kiyotaki (2010, 2015).

3.1 Production

The supply side of the economy is simple. Final goods are produced by perfectly

competitive firms that use labor and capital to produce their output. They also

have access to bank loans, and conditional on being able to take out loan, they do

not face any financial frictions. These firms pay back the crediting banks in full

via profits. Meanwhile, capital goods are produced by perfectly competitive firms,

which are owned by the collective household.

3.1.1 Final Good Firms

There is a representative competitive final good producing firm which aggregates a

continuum of differentiated intermediate inputs according to a Dixit-Stiglitz aggre-

gator:

Yt =

(∫ 1

0

Yt(i)
ϵ−1
ϵ di

) ϵ
ϵ−1

, ϵ > 0. (7)
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So final good firms maximize their profits by selecting how much of each intermediate

good to purchase, and so their problem is:

max
Yt(i)

PtYt −
∫ 1

0

PtYt(i)di.

Solving for the FOC for a typical intermediate good i is:

Yt(i) =

(
Pt(i)

Pt

)−ϵ

Yt. (8)

The relative demand for intermediate good i is dependent of i’s relative price with

ϵ, the price elasticity of demand, and is proportional to aggregate output, Yt.

From Blanchard and Kiyotaki (1987), we can derive a price index for the aggre-

gate economy:

PtYt ≡
∫ 1

0

Pt(i)Yt(i)di.

Then, plugging in the demand for good i from (8) we have:

Pt =

(∫ 1

0

Pt(i)
1−ϵdi

) 1
1−ϵ

.

3.1.2 Capital Good Firms

We assume that capital goods are produced by perfectly competitive firms, and that

the aggregate capital stock grows according to the following law of motion:

Kt = It + (1− δ)Kt−1, (9)

where It is investment and δ ∈ (0, 1) is the depreciation rate.

The objective of the capital good producing firm is to choose It to maximize

revenue, QtIt. Thus, the representative capital good producing firm’s objective

function is:

max
It

QtIt − It − Φ

(
It
Ī

)
It,

where Φ(·) are investment adjustment costs as in Christiano, Eichenbaum, and Evans

(2005), and are defined as:

Φ

(
It
Ī

)
=
κI
2

(
It
Ī
− 1

)2

,

with Φ(1) = Φ′(1) = 0 and Φ′′(·) > 0. The investment adjustment cost parameter,
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κI = Φ′′(1) is chosen so that the price elasticity of investment is consistent with

instrumental variable estimates in Eberly (1997).

Differentiating the objective function with respect to It gives the FOC:

Qt = 1 + Φ

(
It
Ī

)
+

(
It
Ī

)
Φ′
(
It
Ī

)
. (10)

3.1.3 Intermediate Goods Producers

The continuum of intermediate good producers are normalized to have a mass of

unity. A typical intermediate firm i produces output according to a constant returns

to scale technology in capital and labor with a common productivity shock:

Yt(i) = AtKt−1(i)
αLt(i)

1−α.

The problem for the i-th firm is to minimize costs,

min
Kt−1(i),Lt(i)

zktKt−1(i) + wtLt(i),

subject to their production constraint:

AtKt−1(i)
αLt(i)

1−α ≥ Yt(i) =

(
Pt(i)

Pt

)−ϵ

Yt.

This yields the minimized unit cost of production:

MCt =
1

At

(
zkt
α

)α(
wt

1− α

)1−α

. (11)

The price-setting problem of firm i is set up à la Rotemberg (1982) where firm

i maximizes the net present value of profits,

Et

[
∞∑
s=0

Λh
t,t+s

{(
Pt+s(i)

Pt+s

(1− τ)−MCt+s

)
Yt+s(i)−

κ

2

(
Pt+s(i)

Pt−1+s(i)
− 1

)2

Yt+s

}]
,

by optimally choosing Pt(i), and where κ denotes a price adjustment cost parameter

for the firms.7 Differentiating the above expression with respect to Pt(i) yields the

7. We calibrate κ to the following:

κ =
ϵθ

(1− θ)(1− βθ)
,

where θ is the probability of firm i being unable to optimally adjust its price in any given period
as in a model with Calvo (1983) pricing. For further details please refer to Appendix A.2.1.
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following FOC:

κ

(
Pt(i)

Pt−1(i)
− 1

)
Yt

Pt−1(i)
=

1− τ

Pt

(
Pt(i)

Pt

)−ϵ

Yt

+ κEt

[
Λh

t,t+1

(
Pt+1(i)

Pt(i)
− 1

)
Pt+1(i)

Pt(i)2
Yt+1

]
− ϵ

(
Pt(i)

Pt

(1− τ)−MCt

)(
Pt(i)

Pt

)−ϵ−1
Yt
Pt

.

Evaluating at the symmetric equilibrium where intermediate firms optimally price

their output at Pt(i) = Pt,∀i, allows us to write:

πt(πt − 1) =
1

κ
[ϵMCt + 1− ϵ+ τϵ− τ ]

+ Et

[
Λh

t,t+1(πt+1 − 1)πt+1
Yt+1

Yt

]
+ ξπt ,

(12)

where ξπt is a cost-push shock that follows a stationary AR(1) process (in logarithms).

Also, under the symmetric equilibrium we can express output as:

Yt = AtK
α
t−1L

1−α
t , (13)

where it follows that:

Kt−1 =

∫ 1

0

Kt−1(i)di, Lt =

∫ 1

0

Lt(i)di.

As noted above, there is a distortion arising from monopolistic competition

among intermediate firms. We assume that there is a lump-sum subsidy to off-

set this distortion, τ . From Equation (12), we see that the policymaker chooses a

subsidy such that the markup over marginal cost is offset:8

τ = − 1

ϵ− 1

which guarantees a non-distorted steady-state. Hereinafter, we abstract from dis-

torted steady states and only consider the efficient steady state. Our choice to model

nominal rigidity following Rotemberg pricing should not alter our welfare analysis

in Section 3.7. As noted by Nisticò (2007) and Ascari and Rossi (2012), up to a

second order approximation and provided that the steady state is efficient, models

under both Calvo and Rotemberg pricing imply the same welfare costs of inflation.

8. Note that this assumes that steady state inflation is net-zero, i.e., π̄ = 1.
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Therefore, a welfare-maximizing social planner would prescribe the same optimal

policy across the two regimes.

3.2 Households and Workers

The representative household now contains a continuum of individuals, normalized

to 1, each of which are of type i ∈ {b, h, u}. The setup follows Murakami and

Viswanath-Natraj (2021). Bankers (i = b) and BHH workers share a perfect insur-

ance scheme, such that they each consume the same amount of real output. How-

ever, UHH workers are not part of this insurance scheme, and so their consumption

volumes are different from bankers and workers. Similar to before in Section 2, we

define Γh as the proportion of the BHH and bankers, and the UHH are of proportion

Γu = 1− Γh.

We endogenize labor supply decisions on the part of households, and so the BHH

maximize the present value discounted sum of utility:9

Vh
t = max

{Ch
t+s,L

h
t+s,Dt+s,Kh

t+s,DCh
t+s}∞s=0

Et

∞∑
s=0

βs ln

(
Ch

t+s − ζh0
(Lh

t+s)
1+ζ

1 + ζ

)
, (14)

subject to their period budget constraint:

Ch
t +Dt +QtK

h
t + χh

t +DCh
t + χDC,h

t + T h
t

= wtL
h
t +Πt + (zkt + (1− δ)Qt)K

h
t−1 +

Rt−1Dt−1 +RDC
t−1DC

h
t−1

πt
,

(15)

where wt are real wages, Lj
t , j ∈ {h, u}, is labor supply, ζ is the inverse-Frisch

elasticity of labor supply, ζj0 is a relative labor supply parameter, Kh
t are equity

holdings in firms by the BHH, χh
t are the costs of equity acquisitions incurred by

the BHH, T j
t are now lump-sum taxes, Qt is the price of equity/capital, and Πt are

distribution of profits due to the ownership of banks and firms. We also note that

Λh
t,p is the BHH stochastic discount factor (SDF):

Λh
t,p ≡ βp−tEt

(
λhp
λht

)
, (16)

where λht is the marginal utility of consumption for the BHH.

One distinction between the BHH and bankers purchasing equity in firms is the

9. We make use of Greenwood–Hercowitz–Huffman preferences for both the BHH and UHH
to eliminate the income effect on an agent’s labor supply decision. Additionally, it allows us to
develop a tractable analytical solution for the model steady state
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assumption that the BHH pays an efficiency cost when it adjusts its equity holdings.

We assume the following functional form for χh
t :

χh
t =

κh

2

(
Kh

t

Kt

)2

ΓhKt. (17)

Meanwhile, the UHH maximizes the present discounted sum of per-period utili-

ties given by:

Vu
t = max

{Cu
t+s,L

u
t+s,Mt+s,DCu

t+s}∞s=0

Et

∞∑
s=0

βs ln

(
Cu

t − ζu0
(Lu

t )
1+ζ

1 + ζ

)
, (18)

subject to its budget constraint,

Cu
t +Mt + χM

t +DCu
t + χDC,u

t + T u
t = wtL

u
t +

Mt−1 +RDC
t−1DC

u
t−1

πt
, (19)

and the CIA constraint, (2).

3.3 Bankers and the Finance Sector

Among the population of bankers, each j-th banker owns and operates her own bank.

The bankers are indexed on a continuum of measure one. A banker will facilitate

financial services between households and firms by providing loans to firms in the

form of equity, kbt , funded by domestic deposits, dt, and digital currencies deposits,

dct, and her own net worth, nt. However, financial frictions may limit the ability of

the banker to raise deposits from households.

To this end, each banker seeks to accumulate retained earnings to funds their

investments. To maintain model tractability, in each period, bankers have a fixed

probability of moving in and out of the financial sector. Let σb denote the probability

that a banker remains as a banker in the following period, with complementary

probability 1 − σb that she retires. This implies an expected franchise life of an

individual bank of 1
1−σb

. Furthermore, the number of bankers exiting the financial

market is matched by the number of new bankers entering.

New bankers start up their franchise with fraction γb of total assets of the banked

households. Upon retirement, a banker will exit with her net worth, bringing the

balance back to the household in the form of a dividend. Therefore, a banker will

seek to maximize her franchise value, Vb
t , which is the expected present discount
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value of future dividends:

Vb
t = Et

[
∞∑
s=1

Λh
t,t+sσ

s−1
b (1− σb)nt+s

]
, (20)

where nt+s is the net worth of the bank when the banker retires at date t + s with

probability σs−1
b (1 − σb). Note that we make the simplifying assumption that each

individual banker exogenoubsly accepts digital currency deposits, dct, directly in

proportion to the population of bankers and total digital currency holdings. In

other words, in aggregate, the total sum of individual digital currency deposits at

each j-th bank, dct(j), is equal to aggregate digital currency deposits, DCt:∫ 1

0

dct(j) dj = DCt.

Thus, a banker will choose quantities kbt and dt to maximize expression (20). We

assume that managing the sources of funding is costly in terms of resources, and so

the banker pays the following the management cost:

χb
t =

κb

2
x2tQtk

b
t , (21)

where we define κb > 0 is a parameter and xt is a banker’s digital currency deposit

leverage ratio:

xt =
dct
Qtkbt

. (22)

A financial friction in line with Gertler and Kiyotaki (2010) is used to limit the

banker’s ability to raise funds, whereby the banker faces a moral hazard problem:

the banker can either abscond with the funds she has raised from depositors, or

the banker can operate honestly and pay out her obligations. Absconding is costly,

however, and so the banker can only divert a fraction θb > 0 of assets she has

accumulated.

The caveat to absconding, in addition to only being able to take a fraction of

assets away, is that it takes time – i.e. it take a full period for the banker to abscond.

Thus, the banker must decide to abscond in period t, in addition to announcing what

value of dt she will choose, prior to realising next period’s rental rate of capital. If a

banker chooses to abscond in period t, its creditors will force the bank to shut down

in period t+ 1, causing the banker’s franchise value to become zero.

Therefore, the banker will choose to abscond in period t if and only if the return

to absconding is greater than the franchise value of the bank at the end of period t,
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Vb
t . It is assumed that the depositors act rationally, and that no rational depositor

will supply funds to the bank if she clearly has an incentive to abscond. In other

words, the bankers face the following incentive constraint:

Vb
t ≥ θbQtk

b
t , (23)

where we assume that the banker will not abscond in the case of the constraint

holding with equality.

3.3.1 Bank Balance Sheet

Table 1 represents the balance sheet of a typical banker, and so we can write the

following balance sheet constraint that the banker faces:

Qtk
b
t + χb

t = dt + dct + nt. (24)

Table 1: Bank balance sheet

Assets Liabilities + Equity
Loans Qtk

b
t Deposits dt

Management costs χb
t Digital currency deposits dct

Net worth nt

Additionally, we can write the flow of funds constraint for a banker as

nt = [zkt + (1− δ)Qt]k
b
t−1 −

Rt−1

πt
dt−1 −

RDC
t−1

πt
dct−1, (25)

noting that for the case of a new banker, the net worth is the startup fund given by

the household:

nt = γb[z
k
t + (1− δ)Qt]kt−1.

3.3.2 Rewriting the Banker’s Problem

With the constraints of the banker established, we can proceed to write the banker’s

problem as:

max
kt,dt

Vb
t = Et

[
Λh

t,t+1

{
(1− σb)nt+1 + σbVb

t+1

}]
,

subject to the incentive constraint (23) and the balance sheet constraint (24).

Since Vb
t is the franchise value of the bank, which we can interpret as a “market

value”, we can divide Vb
t by the bank’s net worth to obtain a Tobin’s Q ratio for the
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bank denoted by ψt:

ψt ≡
Vb

t

nt

= Et

[
Λh

t,t+1(1− σb + σbψt+1)
nt+1

nt

]
. (26)

We define ϕt as the maximum feasible asset to net worth ratio, or, rather, the

leverage ratio of a bank:

ϕt =
Qtk

b
t

nt

. (27)

Additionally, if we define Ωt,t+1 as the stochastic discount factor of the banker, µt as

the excess return on capital over fiat currency deposits, µDC
t as the cost advantage

of digital currency deposits over fiat currency deposits, and υt as the marginal cost

of deposits, we can write the banker’s problem as the following:

ψt = max
ϕt

{
µtϕt + µDC

t xtϕt +

(
1− κb

2
x2tϕt

)
υt

}
, (28)

subject to

ψt ≥ θbϕt.

Solving this problem yields:

ψt = θbϕt, (29)

ϕt =
υt

θb − µt − µDC
t xt +

κb

2
x2tυt

, (30)

where:

µt = Et

[
Ωt,t+1

{
zkt+1 + (1− δ)Qt+1

Qt

− Rt

πt+1

}]
, (31)

µDC
t = Et

[
Ωt,t+1

{
Rt

πt+1

− RDC
t

πt+1

}]
, (32)

υt = Et

[
Ωt,t+1

Rt

πt+1

]
, (33)

Ωt,t+1 = Λh
t,t+1(1− σb + σbψt+1). (34)

For the complete solution of the banker, please refer to Appendix A.2.3 and A.2.4.
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3.4 Fiscal and Monetary Policy

We assume that the government operates a simple fiscal rule to cover the producer

subsidy addressing the distortions arising from monopolistic competition:

− τYt = ΓhT
h
t + ΓuT

u
t . (35)

Meanwhile, the central bank is assumed to operate an inertial Taylor Rule for the

nominal interest rate:

Rt

R̄
=

(
Rt−1

R̄

)ρR (
πϕπ
t XϕY

t

)1−ρR
exp(εRt ) (36)

where it reacts to inflation and the welfare relevant output gap, Xt, which we define

as:

Xt =
Yt

Y f
t

,

where Y f
t is the flexible price level of output corresponding to when κ = 0, and

where εRt is an exogenous and transitory monetary policy shock.

Additionally, we assume that the central bank sets the nominal return on digital

currency one-for-one in line with the nominal interest rate on deposits:

RDC
t = Rt. (37)

We explore the implications of alternative rules on model dynamics and welfare in

Sections 3.7 and 4.1.

3.5 Market Equilibrium

Aggregate consumption, labor supply, and digital currency holdings by the BHH

and UHH are given as:

Ct = ΓhC
h
t + ΓuC

u
t , (38)

Lt = ΓhL
h
t + ΓuL

u
t , (39)

DCt = ΓhDC
h
t + ΓuDC

u
t . (40)

The aggregate resource constraint of the economy is:

Yt = Ct +

[
1 + Φ

(
It
Ī

)]
It +

κ

2
(πt − 1)2Yt

+ Γh(χ
h
t + χb

t + χDC,h
t ) + Γu(χ

M
t + χDC,u

t ),

(41)
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with aggregate capital being given by:

Kt = Γh(K
h
t +Kb

t ). (42)

Aggregate net worth of the bank is given by:

Nt = σb

[
(zkt + (1− δ)Qt)K

b
t−1 −

Rt−1

πt
Dt−1 −

RDC
t−1

πt

DCt−1

Γh

]
+ γb(z

k
t + (1− δ)Qt)

Kt−1

Γh

,

(43)

and the aggregate balance sheet of the bank is given by the following equations:

QtK
b
t = ϕtNt, (44)(

1 +
κb

2
x2t

)
QtK

b
t = Dt +

DCt

Γh

+Nt, (45)

xt =
DCt

QtΓhKb
t

. (46)

Finally, the stationary AR(1) processes for TFP and cost-push shocks (in logs)

are given by:

At = ρAAt−1 + εAt , (47)

ξπt = ρπξ
π
t−1 + επt , (48)

A competitive equilibrium is a set of seven prices, { MCt, Rt, R
DC
t , πt, Qt, wt,

zkt }, 19 quantity variables, { Ct, C
h
t , C

u
t , Dt, DCt, DC

h
t , DC

u
t , It, Kt, K

b
t , K

h
t ,

Lt, L
h
t , L

u
t , Mt, Nt, T

h
t , T

u
t , Yt } , six bank variables, { xt, ψt, ϕt, µt, µ

DC
t , υt },

and two exogenous variables, { At, ξ
π
t }, that satisfies 34 equations. For a complete

list of the equilibrium conditions please refer to Appendix A.2.5. Parameter values

are provided in Table 2, and a brief description of our parameterization strategy

is provided below in Section 3.6. Steady state solutions are provided in Appendix

A.2.6 for the baseline TANK model, and numerical model steady state values can

be found in Table 3.

3.6 Model Parameterization and Steady State Values

We set model parameters, which are found in standard New Keynesian models, in

line with the literature. See, for example, Gaĺı (2015), Walsh (2010), and Woodford

(2003).
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Model parameters that are not standard, particularly the bank parameters, are

set based on Aoki, Benigno, and Kiyotaki (2016). For example, a banker’s survival

rate, σb, is chosen so that the annual dividend payout is a share of 4×(1−σb) = 0.24

of net worth. The banker absconding ratio, θb; the banker management cost of

digital currencies, κb; and the fraction of total assets inherited by new bankers, γb,

are chosen so that in steady state the bank leverage ratio is approximately 4 and

that the share of equity financed by bank finance is approximately 0.70.

Finally, we set the parameters pertaining to monetary policy, namely the sensi-

tivity of nominal interest rates to inflation, ϕπ, the sensitivity of nominal interest

rates to the output gap, ϕY , and the interest rate smoothing parameter, ρR, in line

with Guerrieri and Iacoviello (2015).

Table 2: Parameter values

Parameter Value Description

θb 0.399 Banker absconding ratio

σb 0.940 Survival probability

γb 0.005 Fraction of total assets inherited by new banks

κb 0.022 Management cost for DC

β 0.990 Discount rate

ζ 0.333 Inverse-Frisch elasticity

ζh0 3.050 labor supply capacity

κh 0.020 Cost parameter of direct finance

Γh 0.500 Proportion of BHH

γ 0.500 CIA weight on money

ϕM 0.010 Money adjustment cost parameter

κDC 0.0005 Digital currency adjustment cost parameter

α 0.333 Capital share of output

δ 0.025 Depreciation rate

ϵ 9.000 Elasticity of demand

κI 0.667 Investment adjustment cost

θ 0.750 Calvo parameter

τ -0.125 Producer subsidy

M 1.125 Markup

ϕπ 1.500 Taylor rule inflation coefficient

ϕY 0.100 Taylor rule output coefficient

ρA 0.850 AR(1) coefficient for TFP shock
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Table 2 – Continued

Parameter Value Description

ρπ 0.850 AR(1) coefficient for cost-push shock

ρR 0.550 Taylor rule persistence

Table 3: Baseline TANK steady state values

Variable Value Description

M̄C 1 Real marginal cost

π̄ 1 Gross inflation (annual)

z̄k 0.041 Return on capital (quarterly)

w̄ 1.901 Real wage

R̄ 1.04 Gross nominal interest rate (annual)

Q̄ 1 Price of capital

R̄DC 1.04 Gross nominal return on digital currency (annual)

Ȳ 0.69 Output

L̄ 0.243 Aggregate labor supply

C̄ 0.545 Aggregate consumption

C̄h 0.63 BHH consumption

C̄u 0.46 UHH consumption

D̄C 0 Aggregate DC holdings

Ī 0.14 Investment

K̄ 5.606 Capital

K̄h 3.332 BHH equity holdings

K̄b 7.879 Bank equity

N̄ 1.905 Bank net worth

D̄ 5.974 Deposits

M̄ 0.23 UHH money balances

ϕ̄ 4.137 Bank leverage ratio
K̄
Ȳ

8.127 Capital-output ratio
K̄b

K̄
0.703 Share of bank equity
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We assume the persistence of our exogenous AR(1) processes to be 0.85 per

quarter. Standard deviations of shocks are set to be 1% per quarter, unless otherwise

stated – for instance, innovations to the interest rate are 1% annualized. We assume

no cross correlation of our shocks.

3.7 Model Dynamics and Welfare Comparisons

3.7.1 Impulse Responses to a Monetary Policy shock

Figure 3 presents results in response to a 1% annualized monetary policy shock. We

assume a standard Taylor rule, as set out in Equation (36), and assume that the

CBDC rate to track the deposit rate. Monetary policy tightening causes a decline

in inflation, asset prices and consumption. The increase in deposit rates leads to a

decline in bank net worth, asset prices and bank equity. While this is offset by an

increase in equity held by banked households, this results in a decline in consumption

of the banked and unbanked households.

When a CBDC is introduced, the main differences are in the UHH consumption

response. The UHH response is quantitatively significant and translates to stronger

transmission to aggregate consumption and the output gap. Turning to the bank

balance sheet, we find neutral effects, where a contractionary shock induces the

UHH to hold more CBDC, and the deposit base to shrink as the bank’s funding

costs increase. Therefore net worth of the bank and capital are quantitatively simi-

lar to the no CBDC regime. In summary, monetary policy transmission to aggregate

consumption, output, and pass-through to inflation is strengthened with the intro-

duction of the CBDC. The IRFs to a fundamental TFP shock and cost-push shock

are provided in Appendix A.2.7.
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Figure 3: IRFs to a 1% annualized monetary policy shock
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Note: Figure plots impulse responses of model variables with respect to a 1% annualized innovation to the Nominal Interest Rate. Time periods are

measured in quarters, and responses are measured as a percent deviation from steady state except for Inflation (π), Nominal Interest Rates (R) and Digital

Currency Returns (RDC) which are expressed as annualized net rates.
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3.7.2 Welfare Effects of Introducing a CBDC

Figure 4 evaluates welfare of introducing a CBDC with respect to TFP, cost-push,

and monetary shocks. We find the UHH have lower levels of financial inclusion

and have a stronger incentive to adopt a retail CBDC. As the CBDC offers a rate of

remuneration, it is an effective savings vehicle for the unbanked and enables them to

achieve welfare gains through consumption smoothing. The BHH achieves smaller

net welfare benefits with a retail CBDC. There are two reasons for this. First, the

BHH face some distortionary costs of holding a CBDC relative to bank deposits,

and therefore do not gain directly from access to a CBDC as they already have an

efficient savings vehicle. However, when the UHH hold CBDC, this scales the bank

balance sheet, increasing net worth and bank equity. This explains why BHH have

higher welfare relative to the economy with no CBDC when the banked population

share is low. Turning to aggregate welfare, we observe net welfare benefits are

highest when the economy is primarily unbanked.

Figure 4: Welfare comparison (% change over no-CBDC regime)
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Note: Figure plots welfare for BHH, UHH and aggregate households as a function for the share of

the banked population, Γh. The welfare is calculated as a per cent change from the regime with

no digital currency.

4 CBDC Design: Monetary and Macroprudential

Policies

4.1 Optimal Policy

We now explore the implications for optimal policy, assuming that a policymaker

has access to two instruments in order to maximize welfare: nominal interest rates

on deposits, R, and nominal interest rates on digital currency, RDC . More formally,
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let us state the problem for the welfare maximizing policymaker as:

max
{Rt+s,RDC

t+s}∞s=0

Vt = ΓhVh
t + ΓuVu

t , (49)

subject to the entire set of structural equations as set out in Sections 3.1-3.5.

As CBDC and deposits are imperfect substitutes, the instruments available to the

policymaker are not collinear, allowing us to conduct the optimal policy exercise.10

The presence of unbanked households subject to a CIA constraint leads the pol-

icymaker to set a steady-state rate of inflation that is deflationary. This is a result

well covered in, for example, Chari, Christiano, and Kehoe (1991) and Schmitt-

Grohé and Uribe (2010). Deflation is, however, costly through inefficient price ad-

justments; thus the policymaker induces a relatively low level of deflation (0.66%

annualized). As the share of the unbanked households converges to zero, the model

becomes a standard representative agent setup and the optimal inflation level con-

verges to zero, π̄ → 1.

Figure 5 shows the decomposition of welfare gains associated with both the

introduction of the CBDC and optimal monetary policy. For different levels of the

banked population share, we decompose welfare improvements associated with the

transition from the economy without digital currency and standard Taylor rule to

the economy with digital currency and Ramsey-optimal two instrument monetary

policy. These welfare gains are associated with: (i) introduction of digital currency,

(ii) optimal conventional monetary policy, and (iii) optimal RDC
t setting.11

Consider the welfare decomposition of TFP shocks as in Figure 5a. Firstly, we

observe that for the economy with low initial financial inclusion (Γh → 0) the welfare

improvements are mainly associated with the introduction of digital currency. As

the share of the unbanked decreases, we observe that the welfare benefits associated

with the provision of digital currency go to zero. Secondly, we see that as the

proportion of the banked grows, the importance of optimal conventional monetary

policy for welfare increases. The decomposition of the welfare gains with respect

to the cost-push shock are shown in Figure 5b. Similar to our analysis with the

TFP shock, we observe that the welfare improvement associated with introduction

10. We argue that RDC is different to R in two distinct ways. First, digital currencies are a
sub-optimal savings instruments compared to deposits due to the presence of convex adjustment
costs. Secondly, bankers cannot optimally select the quantity of digital currency deposits. Thus,
RDC can be set to induce a socially optimal level of digital currency. If bankers had been able to
privately optimize x, and if digital currency deposits were a perfect substitute for deposits, then
the two instruments available to the policymaker would be collinear.
11. We compare welfare under the three policy changes to the baseline regime without digital

currency and suboptimal conventional monetary policy. The welfare improvements associated with
each regime change do not include cross effects, which are small in magnitude.
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of digital currency diminish with the population share of BHH. In response to TFP

and cost push shocks, optimal monetary policy is similar to a rule in which the rate

on CBDC tracks the policy rate, Rt = RDC
t . Deviating from this rule results in

negligible welfare improvement and is an order of numerical approximation error.

The results are qualitatively similar with higher values of the adjustment costs of

holding CBDC κDC , and are available in Appendix A.2.8.

Figure 5: Welfare improvement decomposition

(a) TFP shock
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(b) Cost-push shock
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Note: Panel 5a: TFP shock, Panel 5b: cost-push shock. Vertical axis indicates percent increase in

welfare compared to baseline specification without digital currency access.

4.1.1 Welfare Implications of Constant Spread Rules

We have shown that optimal monetary policy is approximated by the simple rule

RDC = R . We now show how deviating from the optimal rule has distributional

implications on welfare. Let us assume that the policymaker operates the digital

currency interest rate rule of the form,

RDC
t = Rt + δDC ,
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where δDC is the constant spread term. We compare welfare outcomes to the case

when the spread between CBDC rates and deposit rates are zero in response to a

1% TFP shock in Figure 6. While aggregate welfare is maximized with RDC = R,

positive and negative values of the spread imply different distributional outcomes.

The BHH are better off under negative values of the spread, while the converse is

true for the UHH. The UHH benefit through the savings channel, when their digital

currency deposits receive a higher rate of interest. The BHH are worse off because

the banker is forced to hold digital currency deposits at a higher rate, resulting in a

decline in bank equity.

Figure 6: Welfare implications of constant spread rule (% ch.)

-5 -4 -3 -2 -1 0 1 2 3 4 5

Rate spread, /DC #10 -4

-15

-10

-5

0

5
BHH
UHH
AGG

Note: Figure plots welfare for BHH, UHH, and aggregate households as a function of the spread

between the policy rate and the CBDC rate. The welfare is calculated as a percent change from

the regime with no digital currency.

4.2 Financial Taxes and Subsidies

We introduce macroprudential policy instruments in the form of taxes and subsidies

to the bank balance sheet. Let τNt denote the subsidy on bank net worth, τDC
t is a

direct tax on digital currency holdings of the BHH and an equivalent subsidy to the

UHH, and τKt is a tax on bank equity holdings. The government’s budget constraint

would then be given by:

τNt ΓhNt − τYt = τKt ΓhK
b
t + Γh(T

h
t + τDC,h

t DCh
t ) + Γu(T

u
t + τDC,u

t DCu
t ). (50)
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With these taxes and subsidies in place, we can rewrite the balance sheet constraint

of an individual banker, (24), as:(
1− τKt +

κb

2
x2t

)
Qtk

b
t = dt + dct + (1 + τNt )nt, (51)

and the excess return on capital over fiat currency deposits, (31), and cost advantage

of digital currency deposits over fiat currency deposits, (32), respectively, are defined

as:

µt = Et

[
Ωt,t+1

{
zkt+1 + (1− δ)Qt+1

Qt

− (1− τKt )
Rt

πt+1

}]
, (52)

and the optimal leverage ratio of the banker, (30), is:

ϕt =
(1 + τNt )υt

θb − µt − µDC
t xt +

κb

2
x2tυt

. (53)

We first assess the effects of a permanent increase in tax and subsidy rates.

Table 4 summarizes the changes in aggregate variables, as well as of welfare, in the

deterministic steady state. We observe that, compared to the baseline case, the

subsidy to net worth, τN , and tax and subsidy on digital currency holdings, τDC ,

are welfare improving, while the tax on bank equity, τK , is not. The subsidy to net

worth alleviates the inefficiencies associated with the competitive equilibrium in the

presence of financial frictions, increasing the ability of the banker to finance equity

and, thus, increases output and consumption. We note that even a small subsidy to

net worth of 0.1% induces increases in net worth by more than 2% and in output of

more than 1%. The subsidy, however, increases volatility of the aggregate variables,

most significantly that of deposits.

The tax and subsidy on digital currency, τDC , primarily serves the role of a

redistribution device, since it is a tax on BHH CBDC holdings and a subsidy to

UHH CBDC holdings. Given its design, it does not change the levels of output

and consumption, but it does make deposits and net worth more volatile. This is

due to the fact that the tax on BHH CBDC holdings makes the household more

eager to substitute its digital currency holdings for deposits, making bank net worth

more volatile as well. The redistribution results in an decrease in the inequality

measure, ω, which is consistent with a decline in consumption differences between

banked and unbanked households. A striking increase in the aggregate welfare is a

direct consequence of this redistribution and is mainly due to the marginal benefit

of tax subsidies to the unbanked exceeding the marginal cost of CBDC taxes to the

banked.
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A tax on bank equity decreases the incentives of the banker to acquire equity

and, thus, leads to a decline in aggregate equity and output. The introduction of

this instrument, however, decreases volatility of the aggregate variables and leads to

more equitable consumption levels across households. This is due to the fact that,

by design, the UHH do not hold equity and benefit from the transfers from the BHH.

The introduction of the tax, however, is not welfare improving in steady state due

to a decrease in economic activity.

Table 4: Permanent tax policy changes

Variable Baseline τN only τDC only τK only

Ȳ 0.6898 0.6972 0.6898 0.6604
(0.0077) (0.0078) (0.0077) (0.0073)

C̄ 0.5447 0.5502 0.5437 0.5230
(0.0092) (0.0092) (0.0092) (0.0087)

Ī 0.1401 0.1424 0.1401 0.1313
(0.0021) (0.0022) (0.0021) (0.0019)

D̄ 5.9744 6.1784 5.9745 5.1938
(1.0204) (1.0590) (1.0852) (0.9038)

N̄ 1.9048 1.9528 1.9048 1.7190
(0.7242) (0.7552) (0.7229) (0.6412)

D̄C 0 0 0 0
(0.0456) (0.0494) (0.1634) (0.0387)

Q̄ 1 1 1 1
(0.0722) (0.0772) (0.0722) (0.0719)

π̄ 1 1 1 1
(0.0107) (0.0104) (0.0107) (0.0105)

ω̄ 0.3806 0.3809 0.3257 0.3791
(0.0087) (0.0086) (0.0141) (0.0085)

u(C̄h, L̄h) -111.5150 -110.5513 -118.8607 -115.4663
(0.3197) (0.3304) (1.1893) (0.3112)

u(C̄u, L̄u) -260.9348 -260.5185 -235.5938 -262.8615
(1.3410) (1.4517) (3.7737) (1.1535)

u(C̄, L̄) -186.2249 -185.5349 -177.2272 -189.1639
(0.5861) (0.6322) (1.3217) (0.5087)

Note: Table shows deterministic steady state values and the standard deviation of variables simu-

lated with TFP, cost-push, and monetary policy shocks over 2,000 periods.

Finally, Figure 7 shows the stochastic steady state transition path of a subsidy

and tax on CBDCs.12 For numerical accuracy of the simulation and calculation of

the stochastic steady state, we only consider small changes in τDC of the order of

12. In a stochastic state, agents anticipate recurrent arrivals of various shocks and choose the
quantities as the function of the state variables; and when aggregate shocks never materialize, the
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0.01%. Consistent with tax redistribution, a tax on BHH CBDC holdings induces a

sharp fall in DCh, while a subsidy to UHH increases its CBDC holdings. The BHH

switches to holding more deposits and equity. The banker’s net worth, however,

declines due to a decrease in the amount of digital currency it receives. We plot the

stochastic steady state transition paths for a permanent subsidy to bank net worth

and a tax on equity in Appendix A.2.11

Figure 7: Stochastic steady state transition (permanent change to tax/subsidy on
digital currency, τDC)
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Note: Plots show a transition from the baseline stochastic steady state to the new one induced

by a permanent change in policy. The change in policy is assumed to happen in period 10 of the

simulations.

economy settles in the stochastic steady state. There is a contradiction in the stochastic steady
state: Even though agents anticipate aggregate shocks to arrive, the shocks never materialize (Aoki,
Benigno, and Kiyotaki 2016).
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5 Conclusion

In this paper we focus on the financial inclusion effects of introducing a CBDC. We

address a number of research questions. What are the welfare implications of a retail

CBDC, and does it address financial inclusion of the unbanked? Does the strength

of monetary policy transmission increase or decrease after CBDC adoption? What

are optimal interest rate rules in an economy with a CBDC, and does it matter

whether CBDC rates are adjustable or fixed?

In the first part, we review the arguments for and against introducing a CBDC

using a simple endowment economy with two types of agents. Welfare for both

sets of households improve with the introduction of a CBDC, however we find the

benefits are stronger for the unbanked. This supports the financial inclusion channel

argument: unbanked households now have a savings device to smooth consumption

and a buffer against macroeconomic fluctuations.

We then extend the model to a New Keynesian setup with banks and financial

frictions to examine the macroeconomic effects of issuing a digital currency. Sim-

ilar to our endowment economy, we find the net benefit of introducing a CBDC

is stronger for unbanked households. This richer framework allows us to evaluate

monetary policy rules and determine the magnitude of monetary policy transmis-

sion. Our results suggest that the introduction of a CBDC amplifies monetary policy

transmission to consumption. This is because the unbanked households now hold

digital currency deposits and are sensitive to the central bank rate.

Our final contribution tests a number of elements of CBDC design. We determine

optimal monetary policy with two instruments: the policy rate on regular deposits

and the rate on CBDC deposits. This speaks to policy discussions on whether the

CBDC rate should be adjustable or fixed, and whether monetary policy transmission

requires CBDC deposits to be responsive to the policy rate. When CBDCs are a

near-perfect substitute for bank deposits, we find optimal policy requires the CBDC

rate to track the policy rate, yielding higher welfare than rules that require a constant

rate of remuneration on the CBDC. Second, we set optimal taxes on the CBDC.

Based on the distributional effects of introducing a CBDC, we define a system of

taxes and subsidies on the CBDC held by each household type. Taxing the banked

households to subsidize unbanked households is strictly welfare improving in our

model framework.
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A Appendix

A.1 Two-Agent Endowment Economy

A.1.1 Model without CBDC

The following equations outline a two-agent endowment economy model with no

CBDCs. Defining the functional form for household utility as logarithmic in con-

sumption,

u(Ct) = lnCt,

we define λit as the marginal utility of consumption of the type i household. Thus,

our equilibrium conditions are:

Households.

βEt
Rt

πt+1

λht+1 = λht (54)

1

Cu
t

= λut + µu
t (55)

βEt

λut+1 + µu
t+1

πt+1

= λut
[
1 + ϕM(Mt − M̄)

]
(56)

Cu
t +Mt = T u

t +
Mt−1

πt
(57)

Cu
t =

Mt−1

πt
(58)

Market clearing.

0 = Γu(T
u
t −Mt) + Γh(T

h
t − Ch

t ) (59)

Ct = ΓhC
h
t + ΓuC

u
t (60)

Mt =
Mt−1

πt
(61)

ωt = 1− Cu
t

Ch
t

(62)

Exogenous processes.

lnT h
t = ρT lnT h

t−1 + εTt (63)

lnT u
t = ρT lnT u

t−1 + εTt (64)
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A.1.2 Steady State for Endowment Economy without CBDC

Given that the steady state transfer amounts, T̄ i, are exogenously set, the steady

state is characterized by the following set of equations:

π̄ = 1,

R̄ =
1

β
,

M̄ = T̄ u
t ,

λ̄u = β,

µ̄u = 1− β,

C̄h = T̄ h,

C̄ = ΓC̄h + (1− Γ)C̄u,

ω̄ = 1− C̄u

C̄h
.

A.1.3 Model with CBDC

As above in Appendix A.1.1, the functional form for household utility is logarithmic

in consumption. Thus, our equilibrium conditions are:

Households.

1

Ch
t

= λht (65)

λht = βEt
Rt

πt+1

λht+1 (66)

λht
(
1 + κDCDCh

t

)
= β

RDC
t

πt+1

λht+1 (67)

χDC,h
t =

κDC

2

(
DCh

t

)2
(68)

1

Cu
t

= λut + αMµ
u
t (69)

βEt

λut+1 + µu
t+1

πt+1

= λut
[
1 + ϕM(Mt − M̄)

]
(70)

λut (1 + κDCDCu
t ) = βEt

RDC
t

πt+1

λut+1 (71)

χDC,u
t =

κDC

2
(DCu

t )
2 (72)

Cu
t +Mt +DCu

t + χDC,u
t = T u

t +
Mt−1 +RDC

t−1DC
u
t−1

πt
(73)
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αMC
u
t =

Mt−1

πt
(74)

Market clearing.

ΓhT
h
t + ΓuT

u
t = Ct + Γhχ

DC,h
t + Γuχ

DC,u
t (75)

Ct = ΓhC
h
t + ΓuC

u
t (76)

Mt =
Mt−1

πt
(77)

ωt = 1− Cu
t

Ch
t

(78)

Exogenous processes.

lnT h
t = ρT lnT h

t−1 + εTt (79)

lnT u
t = ρT lnT u

t−1 + εTt (80)

A.1.4 Steady State for Endowment Economy with CBDC

Given that the steady state transfer amounts, T̄ i, are exogenously set, the steady

state is characterized by the following set of equations:

π̄ = 1,

R̄ =
1

β
,

D̄C
h
= D̄C

u
= 0,

R̄DC =
1

β
+

1

β
κDCD̄C

u
,

C̄h = T̄ h + D̄C
h (
R̄DC − 1

)
− χ̄DC,h,

C̄u = T̄ u + D̄C
u (
R̄DC − 1

)
− χ̄DC,u,

M̄ = αM C̄
u,

λ̄u =
1

C̄u
(
1 + αM

β
− αM

) ,
µ̄u = λ̄u

(
1

β
− 1

)
,

C̄ = ΓhC̄
h + ΓuC̄

u,

ω̄ = 1− C̄u

C̄h
.
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A.1.5 Endowment economy IRFs

Below are the IRFs related to the endowment economy. We observe that the pres-

ence of digital currency in the economy allows for better risk-sharing between the

households. This is more vivid in the money supply shock case; as the money supply

shock influences the UHH, they are eager to smooth consumption through borrowing

in digital currency, which leads to perfect stabilization of aggregate consumption.

Figure 8: IRFs to 1% endowment shock

10 20 30 40
0

0.1

0.2

0.3
Ch

No DC
DC

10 20 30 40
0

0.1

0.2

0.3
Cu

10 20 30 40
0

0.1

0.2

0.3
C

10 20 30 40
-2

0

2

4

6
#10 -4 !

10 20 30 40
0

0.5

1

1.5
#10 -3 DCu

10 20 30 40
-1.5

-1

-0.5

0
#10 -3 DCh

10 20 30 40
4.04

4.0401

4.0402

4.0403

4.0404
R

10 20 30 40
4.04

4.0401

4.0402

4.0403

4.0404
RDC

10 20 30 40
-1

-0.8

-0.6

-0.4

-0.2

0

:

10 20 30 40
0

0.1

0.2

0.3
Tu

Note: Price variables are in levels, quantity variables are in percent deviations from steady state.

The proportion of banked and unbanked households are set to a baseline value of Γh = Γu = 0.5.

Figure 9: IRFs to 1% money supply shock
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The proportion of banked and unbanked households are set to a baseline value of Γh = Γu = 0.5.
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A.2 TANK model with Central Bank Digital Currency

A.2.1 The New Keynesian Phillips Curve

If we log linearize Equation (12) about the non-inflationary steady state, we yield

the NKPC. First start by totally differentiating (12):

(2π̄ − 1)dπt =
ϵ

κ
dMCt + β(2π̄ − 1)Etdπt+1,

where π̄ = M̄C = 1 (recall that we have production subsidy τ to offset distortions

arising from monopolistic competition). Substitute these values in and assume that

dMCt =MCt − M̄C to get the log-linearized NKPC:

π̂t =
ϵ

κ
M̂Ct + βEtπ̂t+1, (81)

where hatted variables denote log-deviations from steady state values (for any vari-

able xt : x̂ = ln xt

x̄
, and where we calibrate κ to a standard value as in, for example,

Blanchard and Gaĺı (2007):

κ =
ϵθ

(1− θ)(1− βθ)
.

A.2.2 Household Optimization Problem

The FOCs to the BHH problem are:

λht =
1

Ch
t + ζh0

(Lh
t )

1+ζ

1+ζ

, (82)

wt = ζh0 (L
h
t )

ζ , (83)

1 = EtΛ
h
t,t+1

Rt

πt+1

, (84)

1 = EtΛ
h
t,t+1

zkt+1 + (1− δ)Qt+1

Qt + κhΓh

(
Kh

t

Kt

) , (85)

1 = EtΛ
h
t,t+1

RDC
t

πt+1(1 + κDCDCh
t )
. (86)

The FOCs to the UHH problem are:

λut + αMµ
u
t =

1

Cu
t + ζu0

(Lu
t )

1+ζ

1+ζ

, (87)

λutwt =
ζu0

Cu
t − ζu0

(Lu
t )

1+ζ

1+ζ

(Lu
t )

ζ , (88)
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λut
[
1 + ϕM(Mt − M̄)

]
= βEt

[
λut+1 + µu

t+1

πt+1

]
, (89)

1 = βEt

λut+1

λut

RDC
t

πt+1(1 + κDCDCu
t )
. (90)

A.2.3 Rewriting the Banker’s Problem

To setup the problem of the banker as in Section 3.3.2, first iterate the banker’s flow

of funds constraint (25) forward by one period, and then divide through by nt to

yield:
nt+1

nt

=

(
zkt+1 + (1− δ)Qt+1

)
Qt

Qtk
b
t

nt

− Rt

πt+1

dt
nt

− RDC
t

πt+1

dct
nt

.

Rearrange the balance sheet constraint (24) and use the fact that dct/nt = xtϕt, to

yield the following:
dt
nt

=
κb

2
x2tϕt + ϕt − xtϕt − 1.

Substitute this value for dt/nt into the expression for nt+1/nt, and we get:

nt+1

nt

=

(
zkt+1 + (1− δ)Qt+1

Qt

− Rt

πt+1

)
ϕt+

(
Rt

πt+1

− RDC
t

πt+1

)
xtϕt+

(
1− κb

2
x2tϕt

)
Rt

πt+1

.

Substituting this expression into (26), yields the following:

ψt = Et

Λh
t,t+1(1− σb + σbψt+1)


(

zkt+1+(1−δ)Qt+1

Qt
− Rt

πt+1

)
ϕt

+
(

Rt

πt+1
− RDC

t

πt+1

)
xtϕt

+
(
1− κb

2
x2tϕt

)
Rt

πt+1




= µtϕt + µDC
t xtϕt +

(
1− κb

2
x2tϕt

)
υt,

which is (28) in the text.

A.2.4 Solving the banker’s problem

With {µt, µ
DC
t } > 0, the banker’s incentive compatibility constraint binds with

equality, and so we can write the Lagrangian as:

L = ψt + λt(ψt − θbϕt),

where λt is the Lagrangian multiplier. The FOCs are:

(1 + λt)

[
µt + µDC

t xt −
κb

2
x2tυt

]
= λtθ

b, (91)
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ψt = θbϕt. (92)

Substitute (92) into the banker’s objective function to yield:

ϕt =
υt

θb − µt − µDC
t xt +

κb

2
x2tυt

, (93)

which is (30) in the text.

A.2.5 Full Set of Equilibrium Conditions

Households.

wt = ζh0L
h
t (94)

1 = EtΛ
h
t,t+1

Rt

πt+1

(95)

1 = EtΛ
h
t,t+1

zkt+1 + (1− δ)Qt+1

Qt + κhΓh

(
Kh

t

Kt

) (96)

1 = EtΛ
h
t,t+1

RDC
t

πt+1(1 + κDCDCh
t )

(97)

Cu
t +Mt + χM

t +DCu
t + χDC,u

t + T u
t = wtL

u
t +

Mt−1

πt
+
RDC

t−1

πt
DCu

t−1 (98)

λut
λut + αMµu

t

wt = ζu0 (L
u
t )

ζ (99)

λut + αMµ
u
t =

1

Cu
t + ζu0

(Lu
t )

1+ζ

1+ζ

(100)

βEt

λut+1 + µu
t+1

πt+1

= λut
[
1 + ϕM(Mt − M̄)

]
(101)

λut (1 + κDCDCu
t ) = βEtλ

u
t+1

RDC
t

πt+1

(102)

αMC
u
t =

Mt−1

πt
(103)

Production.

Qt = 1 +
κI
2

(
It
Ī
− 1

)2

− κI
Ī

(
It
Ī
− 1

)
(104)

Kt = (1− δ)Kt−1 + It (105)

Yt = AtK
α
t−1L

1−α
t (106)

wt = (1− α)At

(
Kt−1

Lt

)α

(107)
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MCt =
1

At

(
zkt
α

)α(
wt

1− α

)1−α

(108)

πt(πt − 1) =
1

κ
[ϵMCt + 1− ϵ+ τϵ− τ ]

+ Et

[
Λh

t,t+1(πt+1 − 1)πt+1
Yt+1

Yt

]
+ ξπt

(109)

Banks.

ψt = θbϕt (110)

ϕt =
υt

θb − µt − µDC
t xt +

κb

2
x2tυt

(111)

µt = Et

[
Ωt,t+1

{
zkt+1 + (1− δ)Qt+1

Qt

− Rt

πt+1

}]
(112)

µDC
t = Et

[
Ωt,t+1

{
Rt

πt+1

− RDC
t

πt+1

}]
(113)

υt = Et

[
Ωt,t+1

Rt

πt+1

]
(114)

Ωt,t+1 = Λh
t,t+1(1− σb + σbψt+1) (115)

Monetary and fiscal policy.

Rt

R̄
=

(
Rt−1

R̄

)ρR (
πϕπ
t XϕY

t

)1−ρR
exp(εRt ) (116)

−τYt = ΓhT
h
t + ΓuT

u
t (117)

RDC
t = Rt (118)

Market clearing.

Ct = ΓhC
h
t + ΓuC

u
t (119)

Lt = ΓhL
h
t + ΓuL

u
t (120)

DCt = ΓhDC
h
t + ΓuDC

u
t (121)

Yt = Ct +

[
1 + Φ

(
It
Ī

)]
It +

κ

2
(πt − 1)2Yt

+ Γh(χ
h
t + χb

t + χDC,h
t ) + Γu(χ

M
t + χDC,u

t )

(122)

Y f
t = Ct +

[
1 + Φ

(
It
Ī

)]
It

+ Γh(χ
h
t + χb

t + χDC,h
t ) + Γu(χ

M
t + χDC,u

t )

(123)

Xt =
Yt

Y f
t

(124)
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Kt = Γh(K
h
t +Kb

t ) (125)

Nt = σb

[
(zkt + (1− δ)Qt)K

b
t−1 −

Rt−1

πt
Dt−1 −

RDC
t−1

πt

DCt−1

Γh

]
+ γb(z

k
t + (1− δ)Qt)

Kt−1

Γh

(126)

QtK
b
t = ϕtNt (127)(

1 +
κb

2
x2t

)
QtK

b
t = Dt +

DCt

Γh

+Nt (128)

xt =
DCt

QtΓhKb
t

(129)

Exogenous processes.

lnAt = ρA lnAt−1 + εAt (130)

ξπt = ρπξ
π
t−1 + επt (131)

A.2.6 Model Steady State

In the non-stochastic steady state, we have the following:

Q̄ = 1,

π̄ = 1,

R̄ =
1

β
,

R̄DC = R̄.

We define the discounted spreads on equity and DC as:

s = β[z̄k + (1− δ)]− 1, (132)

sDC = 1− βR̄DC = 0, (133)

which we consider to be endogenous and exogenous, respectively.13

13. Note that we could have a non-zero discounted spread between the return on digital currency
and the deposit.
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From the BHH’s FOC with respect to equity, (85), we have:

1 = β

[
z̄k + (1− δ)

1 + κhΓh
K̄h

K̄

]

1 + κhΓh
K̄h

K̄
= β [z̄ + (1− δ)]

Γh
K̄h

K̄
=

s

κh
.

(134)

Additionally, in steady state we have:

Ω̄ = β(1− σb + σbψ̄),

ῡ =
Ω̄

β
,

µ̄ = Ω̄

[
z̄k + (1− δ)− 1

β

]
,

µ̄DC = Ω̄

[
1

β
− R̄DC

]
,

and so, using (132) and (133), we can write:

µ̄

ῡ
= s,

µ̄DC

ῡ
= sDC =⇒ µ̄DC = 0.

Next, define J as:

J =
nt+1

nt

=
[
z̄k + (1− δ)

] K̄b

N̄
− R̄

D̄

N̄
− R̄DC D̄C

ΓhN̄
,

and use the following:

D̄

N̄
=

κb

2
ϕ̄x̄2 + ϕ̄− x̄ϕ̄− 1,

ϕ̄ =
K̄b

N̄
,

D̄C

ΓhN̄
= ϕ̄x̄,
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to write J as:

J = (z̄k + (1− δ)− R̄)ϕ̄+

(
1− κb

2
x̄2ϕ̄

)
R̄ + (R̄− R̄DC)x̄ϕ̄

=
1

β

[
p(s, sDC)ϕ̄+ 1

]
,

where

p(s, sDC) ≡ s+ sDC x̄− κb

2
x̄2

is defined as the return premium.

Then, from (43) we have:

N̄ = σb

{[
z̄k + (1− δ)

]
K̄b − R̄D̄ − R̄DC D̄C

Γ

}
+ γb

[
z̄k + (1− δ)

] K̄
Γ

N̄

N̄
= σb

{[
z̄k + (1− δ)

] K̄b

N̄
− R̄

D̄

N̄
− R̄DC D̄C

ΓN̄

}
+
γb
N̄

[
z̄k + (1− δ)

] K̄
Γ

β = σbβJ +
γb
N̄
β
[
z̄k + (1− δ)

] K̄
Γ

= σbβJ +
γbK̄

b

N̄

(
1 + κhΓ

K̄h

K̄

)
K̄

ΓK̄b

= σbβJ + γb(1 + s)ϕ̄
1

ΓK̄b

K̄

= σbβJ + γb(1 + s)ϕ̄
1

K̄−ΓK̄h

K̄

= σb
[
p(s, sDC)ϕ̄+ 1

]
+ γb(1 + s)ϕ̄

1

1− s
κh

β = σb +

[
σbp(s, s

DC) + γb
1 + s

1− s
κh

]
ϕ̄,

or

ϕ̄ =
β − σb

σbp(s, sDC) + γb
1+s

1− s

κh
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Equation (26) in steady state gives us:

ψ̄ = β(1− σb + σbψ̄)J

= βJ − βσbJ + βσbψ̄J

= β(1− σb)J + βσbψ̄J

=
β(1− σb)J

1− βσbJ

=
(1− σb)

[
p(s, sDC)ϕ̄+ 1

]
1− σb

[
p(s, sDC)ϕ̄+ 1

]
=

(1− σb)
[
p(s, sDC)ϕ̄+ 1

]
1− σb − σbp(s, sDC)ϕ̄

,

and from (92) we have

ψ̄ = θbϕ̄.

Combine the expressions for ϕ̄ and ψ̄ to get:

θb(β − σb)

σbp(s, sDC) + γb
1+s

1− s

κh

=

(1− σb)

[
p(s,sDC)(β−σb)

σbp(s,sDC)+γb
1+s

1− s
κh

+ 1

]

1− σb − σb

[
p(s,sDC)(β−σb)

σbp(s,sDC)+γb
1+s

1− s
κh

] ,

then rearrange:

0 = H(s, sDC)

= (1− σb)

[
βp(s, sDC) + γb

1 + s

1− s
κh

] [
σbp(s, s

DC) + γb
1 + s

1− s
κh

]
− θb(β − σb)

[
σb(1− β)p(s, sDC) + (1− σb)γb

1 + s

1− s
κh

]
.

In the absence of any taxes or subsidies on digital currency deposits, and in the

case where sDC = µ̄DC = 0, the fixed management cost of digital currency κDC > 0

imply that D̄C = x̄ = 0. Thus, we can write the risk premium as:

p(s, 0) → s,
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and

H(s, 0) = (1− σb)

[
sβ + γb

1 + s

1− s
κh

] [
sσb + γb

1 + s

1− s
κh

]
− θb(β − σb)

[
σb(1− β)s+ (1− σb)γb

1 + s

1− s
κh

]
.

We can observe that as γb → 0,

H(s, 0) = (1− σb)s
2βσb − θb(β − σb) [σb(1− β)s]

=⇒ s→ θb
(β − σb)(1− β)

(1− σb)β
.

Thus, there exists a unique steady state equilibrium with positive spread s > 0 for

a small enough γb.

Given s, we then yield:

z̄k =
1

β
(1 + s)− (1− δ),

and since in the steady state M̄C = 1, we also have:

M̄C =

(
z̄k

α

)α(
w̄

1− α

)1−α

= 1

=

(
Ȳ

K̄

)α(
Ȳ

L̄

)1−α

=

(
Ȳ

K̄

)α(
z̄k

α

)α(1−α)
α−1

,

with

w̄ = (1− α)
Ȳ

L̄
,

z̄k = α
Ȳ

K̄
,

=⇒ w̄ = (1− α)

(
z̄k

α

) α
α−1

.

Put these together to get:

K̄

Ȳ
=

(
z̄k

α

) 1−α
α−1

=
α

z̄k
.
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From the FOCs of the BHH and UHH problem, we have:

w̄ = ζh0 (L̄
h)ζ ,

w̄ =
ζu0 (L̄

u)ζ(1 + αM

β
− αM)[

Cu − ζu0
(Lu)1+ζ

1+ζ

] .

But since we have that ζu0 =
ζh0

(1+
αM
β

−αM )
, we can write:

w̄ = ζh0 L̄
ζ .

We can then use our previous expression for w̄ to express L̄ as a function of z̄k:

L̄ =

[
1− α

ζh0

(
z̄k

α

) α
α−1

] 1
ζ

.

Since we know that

w̄ = (1− α)
Ȳ

L̄
,

we yield:

Ȳ =
ζh0
α

[
1− α

ζh0

(
z̄k

α

) α
α−1

] 1+ζ
ζ

.

Additionally, we have:
Ī

K̄
= δ,

and

1

β
=

α Ȳ
K̄
+ 1− δ

1 + κhΓh
K̄h

K̄

⇔ Ȳ

K̄
=
β−1 (1 + s) + δ − 1

α
,

from (134), and:
Ī

Ȳ
=

Ī/K̄

Ȳ /K̄
=

αδ

β−1(1 + s) + δ − 1
.

These of course imply:

K̄ =

[
1− α

ζh0

(
z̄k

α

) α
α−1

] 1+ζ
ζ

ζh0
β−1(1 + s) + δ − 1
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With K̄ and s in hand, we can then turn back to the BHH’s FOC wrt to equity,

(85), to find K̄h:

K̄h =
s

κh

K̄

Γh

,

and also get K̄b:

K̄b =
K̄

Γh

− K̄h.

This then gives us N̄ as we already solved ϕ̄:

N̄ =
K̄b

ϕ̄
.

Then D̄ is also solved as a residual from (24):

D̄ = K̄b − N̄ .

Given Ȳ , Ī, and K̄, we can get C̄:

C̄

Ȳ
= 1− Ī

Ȳ
− κh

2
(ΓhK̄

h)2
(
K̄

Ȳ

)−1

.

From the UHH’s FOC with respect to M , we have:

µ̄u = λ̄h
(
1

β
− 1

)
,

and the FOC with respect to consumption gives us an expression for the marginal

utility from consumption:

λ̄h
(
1 +

αM

β
− αM

)
.

Thus, we can express λ̄u as a function of the marginal utility from consumption:

1

λ̄u
=

(
1 +

αM

β
− αM

)(
C̄u − ζu0

(L̄u)1+ζ

1 + ζ

)
,

noting that because of the values of ζh0 and ζu0 , we have:

L̄u =

(
w̄

ζh0

) 1
ζ

.

Finally, much like aggregate digital currency holdings, the BHH will not hold

any digital currency holdings in steady state due to the presence of management
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costs. This means that in steady state:

D̄C
h
= 0,

which, of course, implies:

D̄C
u
= 0.

A.2.7 Additional Impulse Responses to Shocks

Figures 10 and 11 present results in response to an annualized 1% orthogonal in-

novation to TFP and cost-push shocks, respectively. Figures compare IRFs for a

no-CBDC economy and to an economy with CBDCs.

Figures 12 and 13 show IRFs to a 1 basis point orthogonalized innovation to TFP

and cost-push shocks, respectively. Figures compare IRFs between two economies;

one with Taylor Rule and one with a Ramsey optimal policy rule.
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Figure 10: IRFs to a 1% annualized TFP shock
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Figure plots impulse responses of model variables with respect to a 1 % annualized innovation to TFP. Time periods are measured in quarters, and responses

are measured as a percent deviation from steady state except for Inflation (π), Nominal Interest Rates (R), and Digital Currency Returns (RDC) which

are expressed as annualized net rates.
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Figure 11: IRFs to a 1% annualized cost-push shock
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Note: Figure plots impulse responses of model variables with respect to a 1 % annualized cost-push shock. Time periods are measured in quarters, and

responses are measured as a percent deviation from steady state except for Inflation (π), Nominal Interest Rates (R), and Digital Currency Returns (RDC)

which are expressed as annualized net rates.
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Figure 12: Optimal policy IRFs to a 1 b.p. TFP shock
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Note: Figure plots impulse responses of model variables with respect to a 1 basis point innovation to TFP. Time periods are measured in quarters, and

responses are measured as a percent deviation from steady state except for Inflation (π), Nominal Interest Rates (R), and Digital Currency Returns (RDC)

which are expressed as annualized net rates.
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Figure 13: Optimal policy IRFs to a 1 b.p. cost-push shock
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Note: Figure plots impulse responses of model variables with respect to a 1 basis point cost-push shock. Time periods are measured in quarters, and

responses are measured as a percent deviation from steady state except for Inflation (π), Nominal Interest Rates (R), and Digital Currency Returns (RDC)

which are expressed as annualized net rates.
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A.2.8 Impact of Digital Currency Adjustment Costs

As noted in Section 4.1, as the cost parameter of digital currency holdings, κDC → 0

– which can be thought of as the degree of imperfection of digital currency relative

to deposits – deposits and digital currency become perfect substitutes and, thus,

the importance of RDC as a distinct policy instrument is attenuated. We perform

sensitivity analysis to show how imperfections in design of digital currency influence

optimal policy.

In Figures 14 and 15 we illustrate the dynamics of the model with respect to a

TFP shock and cost-push shock, respectively, for different levels of κDC . We observe

that a higher degree of imperfection of digital currency design leads to two distinct

consequences: (i) potency of monetary policy to reduce variance of inflation and

output is attenuated, (ii) optimal spread between R and RDC is higher. A higher

degree of imperfection of digital currency has direct effect on consumer welfare as

the households face higher digital currency adjustment costs.

Figure 14: IRFs to a 1 b.p. TFP shock (low and high κDC)
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Figure 15: IRFs to a 1 b.p. cost-push shock (low and high κDC)
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Figure 16: Relative welfare comparisons (% change; κDC = 0.002)
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Figure 17: Relative welfare comparisons (% change; κDC = 0.0005)
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Figure 18: Welfare decomposition, 1% annualized TFP shock (κDC = 0.002)
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Figure 19: Welfare decomposition, 1% annualized cost-push shock (κDC = 0.002)
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A.2.9 Banked Population and CBDC Design

Figure 20: Welfare implications of banked population and CBDC design

Note: The plot shows the welfare implications of different digital currency regimes (with respect

to γDC) compared to the baseline specification (γDC = 1) for different banked population (Γh)

compositions.

A.2.10 Welfare and Optimal Policy

Given the period utility function of the type j household,

U j
t = ln

(
Cj

t − ζj0
(Lj

t)
1+ζ

1 + ζ

)
,
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the second-order Taylor expansion of U j
t about the deterministic steady state (C̄j, L̄j)

is:

U j
t − Ū ≃ Ū j

CC̄
j

(
Cj

t − C̄j

C̄j

)
+ Ū j

LL̄
j

(
Lj
t − L̄j

L̄j

)

+
1

2
Ū j
CC(C̄

j)2

(
Cj

t − C̄j

C̄j

)2

+
1

2
Ū j
LL(L̄

j)2

(
Lj
t − L̄j

L̄j

)2

+ Ū j
CLC̄

jL̄j

(
Cj

t − C̄j

C̄j

)(
Lj
t − L̄j

L̄j

)
,

where we ignore terms independent of policy, and where:

Ū j
C =

1

C̄j − ζj0
(L̄j)1+ζ

1+ζ

,

Ū j
L = − ζj0

C̄j − ζj0
(L̄j)1+ζ

1+ζ

(L̄j)ζ ,

Ū j
CC = − 1(

C̄j − ζj0
(L̄j)1+ζ

1+ζ

)2 ,
Ū j
LL =

−
(
C̄j − ζj0

(L̄j)1+ζ

1+ζ

)
ζj0ζ(L̄

j)ζ−1 −
(
ζj0(L̄

j)ζ
)2(

C̄j − ζj0
(L̄j)1+ζ

1+ζ

)2 ,

Ū j
CL = − ζj0(

C̄j − ζj0
(L̄j)1+ζ

1+ζ

)2 (L̄j)ζ .

A.2.11 Stochastic Steady State Transitions due to changes in Macro-

prudential Policy

In Figure 21 we plot the transition path to a new stochastic steady state after the

introduction of permanent subsidy to net worth.14 On impact, there is an increase

in output and consumption, but over time their levels decrease and stabilize at new

lower levels. Even though the policy induces higher deterministic steady state of

the variables, it increases their volatility and, thus, their levels in stochastic steady

state. Finally, we plot the stochastic steady state transition of the tax on equity

in Figure 22. As the bank has a lower incentive to hold equity after the policy is

introduced, it scales down its liabilities, and deposits and net worth decline sharply

on impact. As mentioned, the BHH, however, do not face this tax on their equity

14. To improve numerical accuracy of the simulation and calculation of the stochastic steady
state, we only consider small changes in τN and τK of the order of 0.01%.
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and, thus, decrease their deposit holdings and substitute them with digital currency

and equity, which manifests in growth of aggregate equity.
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Figure 21: Stochastic steady state transition (permanent change to net worth sub-
sidy, τN)
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Note: Plots show a transition from the baseline stochastic steady state to the new one induced

by a permanent change in policy. The change in policy is assumed to happen in period 10 of the

simulations.
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Figure 22: Stochastic steady state transition (permanent change to tax on bank
equity, τK)
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Note: This Figure shows a transition from the baseline stochastic steady state to the new one

induced by a permanent change in policy. The change in policy is assumed to happen in period 10

of the simulations.
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